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Preface

This is my compiled version of the notes in reading Introduction to Mathematical
Statistics by Robert Hogg and Allen Craig, A Guide to Econometrics by Peter
Kennedy and Econometric Analysis by William Greene. This is the version as of
March 2nd, 2003.
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Part 1

Statistical Theory






CHAPTER 1

Probability and Distributions

1. Conditional Probability and Bayes Rule

(1) Pr(A \ ) = T5a572, where Pr(B) > 0.

(2) Pr(AN B) = Pr(A|B)Pr(B) = Pr(B|A) Pr(A).

(3) Pr(u; A |B) = ©P(4;|B), if NA; = 0.

(4) Pr(B|B) = 1.

(5) Pr(A|BNC) = HEGED.

(6) Pr(ANBNC) = Pr(4|BNC)Pr(BNC) = Pr(A|BNC)Pr(B|C)Pr(C).
(7) Pr(nk_A;) =Pr(Ag |[A; N AN NA_)

PI‘(Ak 1 |A1 N A2 n---N Ak,2> cee PI‘(AQ |A1 ) Pr(Al)
(8) If Ay, ..., Ay are nested events, i.e., Ay C Ap_1 C Ag_1--+ C Ay C Ay, then

Pr(ﬂleAi) = PI‘(Ak) = PI‘(AkAk_l) PI‘(Ak_l |Ak_2) s PI"(AQ ‘Al ) PI‘(Al)

(9) Let N;A; =0 and B C A;, then we have
Pr(B|A;)Pr(A;)  Pr(B|A;)Pr(A)

Pr(A;|B) = Pr(B) - X;Pr(B|A;)Pr(4;)

2. Independence

Events A and B are independent if Pr(A|B) = Pr(A), or Pr(B|A) = Pr(B).
In this case, Pr(A N B) = Pr(A)Pr(B) holds. Events Aj,..., A; are mutually
independent if Pr(A; |Ner, A;) = Pr(4;), where I; is any subset of 4; excluding
A;. In the case of mutual independence, Pr(AN B) = 0.

3. R.V., P.D.F. and C.D.F.

A random variable X is a function X : C — B C R. A realization x of the
random variable X is a particular value of the random variable associated with a
particular outcome of the experiment. Pr(X = z) is an induced probability.

Suppose that the set of events B is countable, then X is a discrete random
variable. Suppose that we can find a function such that

(1) f(z) 20,V € B;
(2) 2pep f(2) =1; and
(3) Pr(Bi) =2 sep, f(),

then f(x) is the probability density function (p.d.f.) associated with the random
variable X.

Suppose that the set of events B is uncountable, then X is a continuous random
variable. If a function f(z) satisfies the following,

(1) fx ) 0,Vz € B:
2) [y f(x)dz =1; and
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(3) Pr(B;) = [p, f(x)da
then f(z) is the probability density function (p.d.f.) associated with
X.
In the case of multivariate random variables, we have X : C' — B C R", with
X containing components X1, ..., X;,. The respective p.d.f. f(x) has to satisfy the
following,
(1) f(x17~- Tn) 2 0;
fB acl, wn )dzy -+ - dzy, = 1; and
(3 qu‘, xl,...,xn)dx1~--d:£n.
F(z) = Pr(X < z) is the cumulative distribution function (c.d.f.) of the
random variable X if the following conditions hold:
D) 0<S Fz) <1
(2) ( ) is non-decreasing in z;
(3) Prla< X <b)=F(b )—F(a);and
(4) F(x) is right-continuous.
(The definition for right-continuity: Ve > 0,36 > 0, » |F(x) — F(c¢)| <
gefore<ax<c+d.)
For discrete random variable X, F(z) = > y___ f(k). For multivariate ran-
dom variables X1, ..., X, F(z1,...,2,) = Pr(Xy < 21, ..., Xpn < Zp).

4. Distribution of a Function of Random Variable(s)

Given a one-to-one increasing function u(-) and ¥ = U(X), with given c.d.f.
for X, F(z) = Pr(X < z). The c.d.f. for Y can be found as follows,
Gy) =Pr(Y <y) = Pr(u(X) <y) =Pr(X <u”'(y)) = Flu™ (y)].

Therefore, the p.d.f. of YV is obtained as g(y) = G'(y) = f[u’l(y)}T(y)

If the function u(-) is one-to-one decreasing, then the c.d.f. for Y can be found
as follows,

G(y) =Pr(Y <y) =Pr(u(X) < y) =Pr(X > u™'(y))
=1-Pr(X <u™'(y) =1—Flu"'(y)].
Finally, the p.d.f. of Y can be found as g(y) = —f[u_l(y)]du;—;(y).

If we combine the two scenarios above, we know the p.d.f. of a functional
transformation Y = u(X) is generally

9(y) = flu'(y)]

du”'(y)
dy ’

5. Moments, M.G.F. and C.G.F.

The first moment of a random variable X is its expectation E(X) = [z f(z)dz
The second moment of a random variable X is F(X?) f 22 f(x)dx. The variance
of a random variable is the centralized second moments ie., var(X ) = E[X —
E(X)? = E(X?) - [EX))? = [[z— E(X)]*f(z)dz. The k:th raw moment, as
opposed to centralized moments, is given by FE(X*) = oF f(x

For any random variable X, the moment generatmg functlon (m.g.f.) Mx(s)
is defined to be Mx(s) = Elexp(sX)], and the characteristic generating function
(c.g.f.) Cx(s) is defined to be Cx(s) = Elexp(isX)], where 7 is the imaginary unit.
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Note that not all random variables have a respective moment generating function
but all of them do have a respective characteristic generating function. We focus
on the moment generating function here.

Why would we bother with m.g.f.? Let’s look at some very desirable properties
as follows.

My(s) = [ e fa)do

dM;;(s) _ /m o f(a)da de);(s) oo = /xf(;p)dx — B(X).
f%§ﬁ:/ﬁf%mwmf%§ﬂkﬁ=/ﬁﬂmM=EM%
anX(S) . anx(S)

SMx() /x e oy o | = /:c”f(at)dx — B(x™).

The name of m.g.f. arises from the fact that % ls—o delivers the n'" raw
moment for X. It’s very important to note that there is a one-to-one correspondence
between m.g.f. and the distribution function of the random variable. As long as we
can identify the m.g.f. for a random variable (or a function of random variable),
the distribution function is uniquely pinned down.

6. Multivariate M.G.F. and Independence

Two random variables X and Y are said to be independent if f(z,y) = fx(z)fy (y)
and there is no confounding ranges between X and Y (i.e., the domain of X is in-
dependent with the domain of Y'). Despite that the independence of X and Y
implies f(zly) = fx(z) and f(ylz) = fr(y), f(aly) = Fx(z) doesn’t necessar-
ily imply the independence of X and Y. The joint m.g.f. for a bivariate case
can be defined as Mx y(s,t) = Elexp(sX + tY)], and for the multivariate case
Mx, . x, (81, 80) = Elexp(s1 X1 + -+ - + 5, X))

It can be shown easily that

*M s,t

*M s, t

%) |s=0,t=0 = B(Y?);
82Mx7y(8,t) -

T osor ot S EY)

Note the following properties around independence.

(1) Xi,..., X, are mutually independent iff f(z1,....,z,) = g1(z1) - - - gn(Tn)
plus no confounding ranges.

(2) If Xq,..., X,, are mutually independent, then Pr(z; € Ay,...,z, € 4,) =
Pr(zy € A1) - - - Pr(z,, € Ay).

(3) If Xy, ..., X, are mutually independent, then Fluy (X1)u2(X2)--un(X,)] =
BEluy(X1)] - Eluz(X2)] - - - Eun(Xn)].

(4) The mutual independence of X7, ..., X, is equivalent to Mx, . x, (s1,...,8n) =
Mx, (s1)Mx,(s2) - - - Mx, (sn)-
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7. Weak Law of Large Numbers

The weak law of large numbers indicates that the sample mean of any random
variable converges to its true population mean in probability. In math notations,
it says nlLIrgoPr H%ﬂ — M’ > 5} =0,Ve > 0.

To prove the weak law of large numbers, we need something known as Cheby-
shev’s Inequality, which is just a special case of Markov’s Inequality. Covered below
are both theorems.

Markov’s Inequality says that for u(X) > 0, Priu(X ) q < M holds.
Why is it so? Let A = {z : w(X) > ¢}, then Eu = [u(z)f(z)dz >
Jyu@) f(x)de > [, cf(z)de = cPr(u(X) > ¢ obv1ates the aforementloned in-
equality.

Chebyshev’s Inequality says the following. If X is a random variable with finite
mean E(z) = p and finite variance var(X) = 02 < oo, then Pr(|X — u| > ko) < 5
holds. Why is it so? Note first that E[(X — u)?] = 02 and Pr(|X — pu| > ko) =
Pr[(X — p)? 2 k20?]. Using Markov’s Inequality, we have Pr[(X — pu)? > k%0?] <
E(,ii—;)z 2. Hence Chebyshev’s Inequality follows.

To prove the weak law of large numbers, note that

2
Pr[ﬁ—u’>a}:Pr(|Xn—n,u|> e) =Pr||X,, —nu| > (ns)a]é%,
n o n?e
and thus lim Pr [|Z= —p| > €] =0.

8. List of Common Distributions

(1) Bernoulli: one experiment, two possible outcomes.
f(x) = p*(1 — p)1=2, z(success) = 1, z(failure) = 0.
(2) Binomial: exactly x successes out of n trials of Bernoulli experiments.
flx)=()p* (1 —p)" =", p=mnp, 0> = np(1l —p),
M(t) = (1—p+pe)".
(3) Negative Binomial: exactly z failures before the k*" success.
fl@)= (e —p)n.
(4) Geometric: exactly x failures before the first success.
fl@)=p(1 =p)*, p="1F, o = L, M(t) = =2F=5-
(5) Hyper-geometric: N balls Wlth R red ones, drawing exactly x red out of
n draws without replacement.
R\ (N—R\ /(N
(6) Pareto:
f(2,0) =028 2=+ where x > xo, p = ;’%91.
(7) Trinomial: one experiment, three possible outcomes, repeat n times.
F(2,9) = ss—pyPipsps Y, where p1 +pa +p3 = 1.
M(t1,t2) = (pre'* + pae’ + p3)™.
(8) Multinomial:
flxy,ymy) = mpgflp;z -+ pp®, where Yp, = 1 and Xz, = n.
M(ty, .y tn) = (pre’ +- -+ 1™ + pp)™.
(9) Poisson: (special case of Binomial distribution, n — oo, p — 0, np = A)
e M\ 2
f@,\) =~ 2=0,1,2,... p=0" =\
M(t) = exp[\(et — 1)].
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(10) Gamma:
flz,a,B8) = Ia+g(ﬁf/m where o > 0, a, 3 > 0.
w=ap, o?=ap? Mt)=(1-pt)" ,Wheret<3.
(11) Chi-square: (special case of Gamma distribution, o = £ and § = 2)
fz) = F(gl)ﬁngleff, M(t) = (1—2t)"%, where ¢t < 1.

(12) Exponential: (special case of Gamma distribution, a=1and B = %)
fz) = )\exp( Az), where z > 0, p = §, 0 = 55,
M(t) = (t < A).

(13) Normal:

flz)= le exp {f% (%&)2}7 M(t) = exp(ut + $0°t2).

)\t’

9. Basic Rules on First Two Moments

(1) E(x) = fa:fw Ydz = f f zf(z,y)dydz;

(2) Elg(z,9)] = [, J, 9(x,9)f (2, y)dyda;

(3) E(az + by +c¢)=aE(x)+bE(y)+c

(4) Var(az+by+c) = a®Var(z) + b*Var(y) + 2abCov(z,y) = Var(az + by);
(5) Cov(ax + by, cx 4+ dy) = acVar(z) + bdVar(y) + (ad + be)Cov(z, y)

(bi-linearity of covariance)

10. Bi-variate Normal Distribution

Random variables X and Y follow a bi-variate normal distribution with pa-
rameters px, py, 0%, 0%, p, if

Flay) = 5-okod (1 - )]

exp{_2(1 in) [(x ;:X>2 _Qp(x—/éil(i—ﬂﬂ i <y;:Y)2] }

where p? < 1, —00 < 2 < 00, —00 < Yy < 0.
The above expression in matrix notation is much simpler.

7= X = mx Y — O'g( pPOXOYy
y)’ py )’ poxoy oy ’
1 1 1 B
Flm) = o= 2 exp [—§(Z—u)’2 1<z—u>]

Here are some most important properties of bi-variate and multi-variate normal.

(1) the marginal density of a bi-variate (or multi-variate) normal distribu-
tion is still normally distributed. That is, X ~ N(MX,U%) and Y ~
N(py, 012/)

(2) the conditional density of a bi-variate (or multi-variate) normal distribu-
tion is still normally distributed. That is,

gx
Xy ~N [ux +p;(y*uy), ox(1 02)} ;

oy
Yie ~N [MY +P;($ — px), oy (1 - PQ)] :
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(3) The regression among jointly normally distributed variables is linear!
(4) The moment generating function is M(s) = exp {y's + 3s'Ss}.

11. Conditioning in a Bi-variate Distribution

(1) The conditional mean E(y|x) is called the regression of y on z. A random
variable may always be written as y = E(y|z) + [y — E(y|z)] = E(y|z) +e.
(2) Conditional variance: Var(y|z) = E(y?|z)—[E(y|z)]?. If Var(y|z) doesn’t
change with z, it is called homoskedasticity, i.e., Var(e|z) = o2.
(3) Law of iterative expectations:
E(y) = Ez[E(y|2)];
Cov(x,y) = Covlz, E(ylx)] = [, [x — E(z)|E(yle
(a) To prove the first result, start from f yf(x

then E(y) = [, [, yf(z,y)dydz = [, E( y|96 fx(

)fo(x)dz

wdy = Blyle)f.(x),
)d J
[z

T = E,[E(y|z)
(b) For the becond result, start from f yf(z,y)d f E(y|x)f(m,y)dy
and E(y) = E,[E(ylz)], then Cov(z,y) f f —E(ﬂf)} E(y)]
f@y)dyde = [, [ [z — E(x){E(ylz) — E[E W)}, )dydx

= Covlz, E(ylz)].
(4) Variance decomposition: Var(y) = Var,[E(y|x)] + Ex[Var(y|z)].

The variance of y can be decomposed as the variance of the conditional
mean and the expected variance of y around the conditional mean. The
first term on the RHS is the regression variance, similar to SSR, and the
second term on the RHS is the residual variance, similar to SSE.

Note that [, yf (z,y)dy = [, yf(yl2) fa(2)dy = [ [, S (v]e)dy) f.(x)

= E(y|z)fo(x) = E(ylz) [, f(z,y)dy = [, E(y|z)f(z,y)dy.

(1) (a) To prove Var(y) = Var,[E(y|x)] + E.[Var(y|x)], we have

ly— E@)]* = {ly — E(ylz)] + [E(y|z) — E(y)]}*
= [y — E(y|=)]* + [E(ylx) — E(y)]?
+2[y — E(y|2)][E(ylz) — E(y)].

Therefore, we have
Var(y) = E.Var(ylz) + Vary[E(y|z)]

+ 2{E,[E(y|z)]* — E:[E(ylx)]* — [E(y)]* + [E(y)]*}
= E.Var(ylz) + Var.[E(y|z)].

(2) If E(ylz) = Bw then Cov(z,y) = Cov[z, E(y|z)] = Cov(z, a4 Bx) =
BVar(x), so B = Cov(z,y)/Var(x) and Var,[E(y|z)] = *Var(z) =
pxwa"( )-

() Eu[Var(ylx)] = Var(y) — Var.[E(y|z)]

On average, conditioning reduces the variance of the variable subject
to the conditioning.

(4) IfQE(y|x) = o+ Bz and Var(y|r) is a constant, then Var(y|z) = o5 (1 —
Py)-

(5) The coefficient of determination (COD) is equal to the ratio of regression
variance to the total variance. If E(y|z) = a+ Bz, then COD(= R?) = p?.
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12. Multivariate Distribution

(1) E(x) =p, Var(x)= E[(x—p)(x—p)] =X (variance-covariance matrix)

By dividing o;; by 0;0;, we obtain the correlation matrix R.

(2) E(Ax) =AFE(x) = Au; Var(Ax) = AZA’

Particularly, if (n — K)‘g—z ~x%(n— K), then E[(n — K)i—z] =n—K,
from E[x?()\)] = A, implies E(S?) = 02; and Var[(an)i—z] =2(n—K),
from Var[xy*(\)] = 2), implies Var(S?) = %

13. Multivariate Normal Distribution

(1) If x ~ N(p,%), then Ax+b ~ N(Ap+b,AXA").
(2) Quadratic forms in a standard normal vector.
(a) If x ~ N(0,I), C is square, and C'C = I(i.e., C is an orthogonal
matrix), then C'x ~ N(0,I).
(b) If x ~ N(0,I) and A is idempotent, then x’Ax ~ x?(J), where J is
the rank of A.
(¢) E(a; — 7)? = x'M"x, and rank(M°) = tr(M°) =n(l — L) =n -1,
thus X(x; — )2 ~ x%(n — 1).
(d) nz? = x'(jj’')x, where j = \/Lﬁi. It could be verified that jj’ is idem-
potent with rank of 1, so nz? ~ x2(1).
(e) Ta2 = N(z; — )2 4+ ni? & x'x = xXM’x + X' (I - MO)x < y2(n) =
xX*(n—1) +x*(1).
(f) If x ~ N(0,1I), A and B are idempotent, then x’Ax and x'Bx are
independent if AB = 0.
Let x; = Ax and x» = Bx, then x’Ax = x1/x; and x’Bx = x5'x5.
Since Cov(x1,%x2) = E[(Ax)(Bx) ]| — 0= AVar(x)B’ = AB, AB =
0 would imply the independence of the two quadratic forms.
(g) To prove that X(x; —z)? and nz? are independent, it suffices to prove
M’(I — M) = 0, which is apparently true.
(3) F distribution
If x ~ N(0,I), A and B are idempotent with rank r4 and rg, then
AB = 0 implies that
x' Ax/r
ﬁ ~ F(?"A, TB).
Extension to x ~ N (0,021):
x'Ax/(0%r4)
x'Bx/(02%rp)
(4) Full rank quadratic form
If x ~ N(p,X), then Zfé(x—u) ~ N(0,I) and (x —p)' S (x—p) ~
X*(N).
(5) If x ~ N(0,I) and A is idempotent, then Lx and x’ Ax are independent
if LA =0.
(6)

~ F(ra,rp).

N(0,1)

tHJ) = _.
x2(J)/J]2



10

1. PROBABILITY AND DISTRIBUTIONS

(7) v/nz ~ N(0,1) and X(z; — z)? ~ x*(n — 1) implies that
/nT
Xz —2)?/(n —1)]
ie., v/nz/S ~t(n—1).

~t(n—1),

N [—=



CHAPTER 2

Distribution of Functions of Random Variables

1. Basic Definitions

That Xy, ..., X,, is a random sample of size n is equivalent to the statement
that X1, ..., X,, are independently identically distributed (i.i.d.) random variables.

A statistic is a function of one or more random variables that doesn’t depend
upon any unknown parameters. Note that a statistic is a random variable and that
the p.d.f. of a statistic may involve unknown parameters.

If the addition of two random variables with the same distribution has the
same distribution as the original ones, then we say this distribution has reproduc-
tive property. For example, Gamma, Poisson and Chi-square distributions are all
reproductive.

2. General Approaches

Given that Xi, .., X, is a random sample from p.d.f. f(z). Let YV =
w(Xq, ..., X,). How can we find out the p.d.f. g(y)? There are two basic tech-
niques.

(1) Direct approach
(Find a good enough one-to-one transformation, calculate the Jacobian
of the inverse transformation, find the joint density and finally get the
marginal density. Note that in the last step we have to pay extra care to
the range of variables.)

(2) m.g.f. approach
(Try to use the m.g.f. corresponding to f(z) to figure out the m.g.f. for
Y. Identify the distribution of Y by identify its m.g.f. This approach is
typically simpler than the direct approach.)

3. Direct Approach

Given that Xi, ..., X,, is a random sample from p.d.f. f(x1,...,x,;0). Let
Y; = w;(Xq, ..., X,). How can we find out the p.d.f. g(y1;0)? Here are the steps
for the direct approach.

(1) Construct a good enough one-to-one transformation system between Y;
and X, ie., Y, = u;(Xq,...,X,) and X; = w;(Y1,...,Y,), where ¢ =
1,...,n. Note that the “goodness” of the transformation depends on the
construction of Y; = u; (X1, ..., X,,) for i # 1.

Calculate the Jacobian J = ’g’;ﬂ? ‘

) Find the joint density g(yi, ..., yn) = abs(|J|) flwi(:), ..., wn(")].

Find the marginal density g(y1).

—~ e~
= W N
~— ~—

11
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Here are some examples for exercise.

Ezample 1. X1, ..., X, is a random sample from f(z1,...,2,;0) = 6271,
0<z<1,0>1 Let Y, = X1 X5 X,,. Find g(y1).

Ezample 2. X1 ~ f(z1) and X5 ~ f(x3) are independent, and Y = X; + X.
Find g(y).

4. M.G.F. Approach

Given that Xj, ..., X, is a random sample from p.d.f. f(z). Let ¥ =
w(Xy, ..., X;). How can we find out the p.d.f. g(y)? Basically we are trying to
use the m.g.f. corresponding to X to figure out the m.g.f. for Y. Finally we
can identify the distribution of Y by identify its m.g.f. This approach is typically
simpler than the direct approach.

Example 1. X ~ N(0,1), prove that X2 ~ x?(1).

Proof: Denote Y = X?2. Let’s find out the m.g.f. for Y as follows.

My (t) = Elexp(tX?)]

1 oo q 1

= —=(V1=2tz)? ) dv1—2¢
1—2t/,oo \/2weXp< 5 x)> v
1

V12t

=(1-2t)"3

Clearly My (t) is the m.g.f. of Chi-square distribution with r = 1, i.e., X2 ~ x2(1).
Ezample 2. X1, ..., X, is a random sample from N(0,1), prove that ¥; X? ~
X(T).
Proof: We know from Example 1 that X2 ~ y2(1) and My=(s) = (1 — 2s)"=.
Denote Y = X, X? and let’s find the m.g.f. for Y.

My (s) = Elexp(sY)]
= Elexp(sX7) exp(sX3) - - - exp(s X},)]
= Elexp(sX})]Elexp(sX3)] - - - Elexp(sX?)]
= M (5)My3(s) -+~ Mia (5)
=(1-2s)73",
Clearly My (s) is the m.g.f. of Chi-square distribution with r = n, i.e., ¥; X2 ~
2
XA (T).
Ezample 8. X1 ~ N(p1,01) and X5 ~ N(ug,02) are independent. Prove that
X1 — X9 ~ N(u1 — po, 01 + 03 — 2012).
Example 4. X1, ..., X, is a random sample from N (p,0?). Prove that ¥;X; ~
N(np,no?).

Ezample 5. X1,...,X, is a random sample from N(u,0?). Prove that X ~
N(p, 70°).
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Ezample 6. X; ~ Poisson(\) and X ~ Poisson(Az2) are independent, prove
that X1 + Xo ~ Poisson(A1 + A2).

5. Order Statistics

X1, ..., X, is a random sample from f(z), and Yj, ..., Y, are the t** order
statistics, i.e., y1 < y2 < - -+ < yp. The joint density and marginal density of the
order statistics are given by:

(1) g(y1, s yn) = nlf (1) f(y2) - -~ fyn), —00 <1 <y <+ <yn < +00;3
(2) giy:) = m[F( DI = Flyd)]™ ™ f(yi)-

That Y; is the i'” order statistic requires two things, the i*" position is reserved
for Y; and v; is ranked as the i item. Here is an intuitive account for the marginal
density of the i*" order statistic in terms of permutation.

Consider a line of n slots. First, populate the first (i —1) slots and the probabil-
ityis (;",) = WLZH)' Next, pick one lucky item out of the remaining (n—i—l—l)

items and put it on the §** slot. The probability for this step is ("7} ') =n—i+1.
The two steps above complete the process of securing the it" slot in the hne of n
slots, delivering a probability of (zfl) ("_{‘H) = W&z_l),

Note that merely securing the i*" slot is not enough to get the i*” order statistic,
and we have to make sure that the rank is in line with the position. That is, all
previous (¢ — 1) items are indeed smaller than y;, with probability Pr(Y; < y;, 1 <
j<i—1)=[F(y;)]""', and the future (n — i) items are indeed larger than y;, with
probability Pr(Yy > y;,i + 1<k <n) =[1 - F(y;)]" "

Combining these two components, the marginal density of the it" order statis-
ties can be written as gi(3:) = gy [F(ui)] 11— F ()]~ S ().

6. Student-t, F and Sampling Distribution
(1) If X7 ~ N(0,1) and X5 ~ x?(r) are independent, then X follows a

\/Xz/’r‘

student-t distribution with r degrees of freedom, i.e., \/ii—/r ~ t(r).

(2) If X; ~ x%(r) and X3 ~ x2(s) are independent, then ?/T ~ F(r,s).

(3) If X1, ..., X,, is a random sample from N(u,02) and X = nE ; X; and

5?2 = 1%(X; — X)?, then we have
(a) X ~ (,u7 - ) which implies that M ~ N(0,1).
(b) 7 and S? are independent.

(c) 23 ~ x%(n — 1), which implies that 7"71:%)(7“) ~t(n—1).






CHAPTER 3

Limiting Distributions

Note that in this chapter we use X, as a short-hand for the random sample
X1, .0y Xy We will explain the definitions of convergence in probability, conver-
gence in distribution, convergence in mean square, rules for probability limit, and
finally the central limit theorem.

(1)

1. Convergence

Convergence in Distribution
A random sample X,, (with c.d.f. F,(z)) converges in distribution to
a random variable X (with c.d.f. F(z)), if lim |F,(z) — F(x)| = 0 for
n—oo

every point z at which F(z) is continuous. It is denoted as X, <X,
Convergence in Probability
X, converges in probability to a constant c iff X,, is getting ever closer
tocasn — oo. Thatis, plimX,, =c< lim Pr(|X, —c| >¢)=0,Ve >0
n—oo
or equivalently X,, 2 ¢ < lim Pr(|X, — ¢/ <¢) =1,¥e > 0.

n—oo

Convergence in Mean Square

A random sample X,, has mean p,, and variance o2. If nlin;o n = C
=

and lim o2 = 0, then X,, converges in mean square to c. It’s denoted
n—oo

by plim X,, = ¢. This result can be easily proved using Chebyshev’s
Inequality, covered in an earlier chapter.
Relationship between Three Forms of Convergences

If a random sample X,, converges in distribution to a degenerate dis-
tribution X that has probability 1 at point ¢, then X,, & cor plim X,, = c.
If a random sample converges in mean square to ¢, then it also converges
in probability to ¢, but the converse need not be true.

2. Rules for Probability Limit

Slutsky Theorem: For continuous function g(x,) that is not a function of
n, we have plim[g(x,)] = g[plim(z,)].

plimz, = ¢ and plimy, = d imply the following: plim(z,, + y,) = ¢+ d;
plim(z,y,) = cd; plim(%) =<, ifd#0.

If W,, is a matrix whose elements are random variables, i.e., random
matrix and plim W,, = Q, then plimW ! = Q-1

If X,, and Y, are random matrices, and plimX,, = A ,plimY, = B,
then plimX, Y, = AB.
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3. Rules for Limiting Distributions

(1) If z, <4 ¢ and plimy, = ¢, then z,y, ica:, Ty + Yn L + ¢, and z—" <, <,
(c #0).

(2) If x,, < 2 and g(xy) is a continuous function, then g(z,,) ig(x). Partic-
ularly, F(1,n) = t3(n) < 2(1).

(3) If y,, has a limiting distribution and plim(x, — y,) = 0, then z,, has the
same limiting distribution as y,.

4. Methods of Finding Limiting Distributions

Generally speaking, there are two ways to do it. One is to calculate the proba-
bility limits and the other is to calculate the limiting moment generating function.
Here are the steps for the plim approach:

(1) find F,(z); (We may need the method of finding the distribution of func-
tions of random variables, covered in an earlier chapter.)
(2) calculate lim F,(z) and define F(z) = lim F,(z);
(3) identify what distribution X has corresponding to F(z);
(4) conclude that X, 4 X
In particular, if X has any one of the following properties:

@ f@={ 5 it

1 it >
(b) F(m)—{ 0, if z <

(¢) Mx(s) = exp(sp),

then conclude that X,, 2 wor X, 4 x , where X is a degenerate
distribution that has probability of 1 at point z = p.

Here are the steps for the limiting m.g.f. approach.
(1) find Mx, (s);
(2) calculate ILH(}O Mx, (s) and define Mx(s) = nlLH;O Mx, (s);
(3) identify qulat distribution X has according to Mx (s);
(4) conclude that X, 4 x.

In particular, if Mx, (s) = [MZ (%)]n or Mx, (s) = {MZ (i)}n’
take advantage of the following two tricks.
(a) Use Taylor expansion as follows,
Mz (%) = Mz(0) + £My(0) + o(5;)
=1+ 2E(2) +o(d);
5 S 32
My (Z5) = Mz(0) + 2= M5 (0) + 52 MZ(0) + o(2)
=1+ 2=B(2) + 5; B(Z%) + o(3);

(b) Use lim (1+ %)n = e, when computing nlingo Mx, (s).

5. Central Limit Theorems

(1) Univariate, same distribution, finite p and o2. /n(X,, — p) 4, N(0,0?%).
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(2) Univariate, different distribution, finite y; and o2. If lim &2 = 52, i.e.,

n—oo
lim Var(y/nX,) = &%, then vn(X, — fin) HN(O, 72).
n—oo
(3) Multivariate, same distribution, finite vector p and finite positive definite
covariance matrix Q. /n(X,, — 1) <, N(0,Q).
(4) Multivariate, different distribution, finite vector ; and finite positive
definite covariance matrix Q;. If lim Var(Q,) = Q, then /n(X, —
n—oo

fin) > N(0, Q).

(5) Limiting normal distribution of a function. If \/n(Z, — u) — N(0,0 )
and if g(z,) is a continuous function not involving n, then \/n[g(Z,

d
9(w)] = N{0,[g'(Z,)]?0%}.
(6) Limiting normal distribution of a set of functions. If \/n(Z,—pu) < N(0,%)
and ¢(Z,,) is a set of J continuous functions not involving n, then v/n[c(Z,)—

c(u)] > N(0,CSC), where C = 25Z).

6. Asymptotic Distributions

(
(2) It Vn(d — ) i N(0, V), then % N (6, ¥). Asy.Var(f) = ¥.
= N(0, Z-) and g(f) is a continuous function not involving n, then
9(0) = N{g(6), g/ (6)]°°}.
) and c(f) is a set of J continuous functions not involving

c(9) = Nle(0), <Y<,

n

7. Example of Limiting Distribution

A random sample X,, has mean p and variance 02 < co. Prove that

7ﬁ<5{5 —H) 4, N(0,1).

(1) By Central Limit Theorem, we have M 4, N(0,1);
(2) Prove plim(S?) = o2 as follows.

S?=1v(X, - X)?=1vx? - X?
plim(2XX7) = plim(X7) = B(X?)
plim[(X)?] = [plim(X)]* = [E(X)]”

plim(S?) = plim(2XX7) — plim(X?)
= E(X?) - [E(X)]”

Note that we have twice deployed the weak law of large number, which
says that plim(Y,) = E(Y) as long as the population distribution has
finite mean and variance. Refer to an ealier chapter for detailed coverage.
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(3) From plim(S?) = o2, we know plim(S/o) =1 or S/o & 1.
(4) Using results from steps (1) and (3), we have

VX =) a N(0,1).

Q[



(1)

2)

CHAPTER 4

Statistical Inference

1. Desirable Statistic Properties

Unbiased estimator

In the case of single parameter 6, the estimator 6 is unbiased if £ (é) =
0; in the case of vector 0, it requires equality of element by element.
Efficient estimator

In the case of single parameter 6, 6, is more efficient than 92 if
Var(6y) < Var(fy). In the case of vector 6, 0; is more efficient than
0y if Var(f) — Var(0y) is a nonnegative definite matrix.
Efficiency

If the case of single parameter, 0 is efficient if it achieves the CRLB,
[1(0)]~1, where

921 L Oln L\2
Ill ”le case Of \/eCtOI 0,

10) = —E(%gs5) = El(Z555) (255,

0000’ 00’
1 o2 0
For normal distribution, |I # =| n 4 |-
o? 0o 2

Let /i and 62 be unbiased estimators, and Var(fi 0?) = V, then
V — [I(2 6%)]7! is a nonnegative definite matrix. Particularly, i = Z and

&% = s? implies that

2

Var(/l) = %7
i.e., fi achieves the CRLB, and that

Var(6?) = 20

n—1’
i.e., 52 doesn’t achieve the CRLB.
Consistency
For the single parameter case, the estimator 0 is consistent if and
only if plimé = 0; for the vector case, it requires the equality of element
by element. If x, has finite 4 and o2, then Z is a consistent estimator
for p. For any function g(z), if E[g(z)] and Var[g(z)] are finite, then

plim +3g(z) = E[g(z)].
2. Sufficient Statistics

Sufficient Statistics
X1, ..., X, is a random sample from f(z;0). YV = u(Xy,...,X,,) is
a sufficient statistic for 6 if given any other statistic Z = v(Xy, ..., X)),

19
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the conditional density function doesn’t depend upon 0, i.e., g(y, z;0) =
h(zly) - g(y; 0) and h(z]y) doesn’t depend upon 6.
(2) Fisher-Neyman Theorem
X1,...,Xp is a random sample from f(z;0). Y = u(Xy,...,X,) is a
sufficient statistic for 0 iff f(x1,...,2,;0) = g(y;0) - h(z1,...,x,). Note
that h(-) doesn’t depend upon 6.
(3) Factorization Criterion
X1,..., X, is a random sample from f(z;0). ¥V = u(Xq,..,X,) is a
sufficient statistic for 6 iff f(z1,...,x,;60) = k1(y;0) - k2(x1, ..., 2,), where
both k2(-) and the domain of ko(-) don’t depend upon 6.
Ezample 1: Xi,...,X, are ii.d. Poisson(\). So the joint density
function can be factorized as follows,

e*An)\Exi

f(xlv ooy T >\) = T,L' = (eiAn)\Exi) .

1

Hence, Yz; is a sufficient statistic for A.
Ezample 2: Xi,...,X,, are ii.d. Bernoulli(p). So the joint density
function can be factorized as follows,

f(xla -..733n;p) — ple(l _ p)n—Ewi — [pzzi(l _ p)n—Ezi] .1,

Hence, Yz; is a sufficient statistic for p.
(4) Rao-Blackwell Theorem

Let Y be sufficient for 6§, and W be any unbiased estimator for 6,

consider E(W|Y = y) = ¢(y), then

(a) ¢(y) is a statistic, i.e., there is no 6 hidden in ¢(y);

(b) é(y) is unbiased for 9

(¢) var[p(y)] < var(W);

(d) for many distribution (known as “complete” families), ¢(y) is unique

and the minimum variance unbiased estimator (MVUE) for 6.

(5) Transformation of Sufficient Statistic

If Y is sufficient for 8, then any function of Y is also sufficient for 0
as long as the function itself doesn’t dependent upon 6.

If Y is sufficient for 6, and W = u(Y’), which is a one-on-one corre-
spondence, is unbiased for €, then W is the minimum variance unbiased
estimator (MVUE) for . Intuitively speaking, an unbiased estimator W
that utilizes the minimum information Y necessary to describe 6 has to
be the “leanest” among all unbiased estimators for 6.

(6) Technique for Finding MVUE using Rao-Blackwell Theorem
(a) prove that Y is sufficient for 6 by using the factorization criterion;
(b) find an unbiased estimator W for g(0), i.e., E[W] = g(0); (Sometimes
we find that E(Y) = a-g(0) + b, then W = (Y — b)/a will be an
unbiased estimator for g(6).)
(c) calculate the conditional expectation E(W|Y = y) = ¢(y);
(d) by Rao-Blackwell theorem, conclude that ¢(y) is a MVUE for g(6).
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Ezample 3: From bi-variate normal distribution, we know that Y;|x; ~
N(Bx;, 1), where the variance is standardized to 1. The joint density func-
tion can be factored as follows,

FW1y wor Un [T, ooy T3 B) = (27) 72 exp{—3 %[y — Bai]?}
= {exp[BSiziy; — %52219512]}
. {(27r)7% eXp[—%Eiyf]} ‘
Because E(X;z:y;) = Si[z:E(y:)] = B3, we know B[Sy, /Xa7] = B,

ie., ZZnyZ/Ele is an unbiased estimator for 5. By the factorization
criterion, we know

1
kl(yh ey Yns L1y ooy Ty ﬁ) = exp {ﬂzley’b - §ﬁ222$3}
Yixiy; 1
2 iLiYi 2
= (vt 75 -7}

implies that ¥;x;y;/%;2? is sufficient for 3. Therefore, ¥;z;v; /327 is a
minimum variance unbiased estimator for S.

3. Cramer-Rao Lower Bound

Let X be a random variable with p.d.f. f(z;0). Define a score vector g =

alngéx;e) and H = %. We can show that E(g) = 0 and var(g) = —E(H)
as follows.
Starting from [ f(x;60)dz =1 and taking derivatives with respect to 6, we have

/de:()

00
Of (@ 0)/f(@50) oo v
/Tf(x,ﬁ)dx =0
Oln f(x;0) ., B
/Tf(x,Q)dx =0
E(g) =0.

Starting from [ %Wf(m; 0)dx = 0 and taking derivatives with respect to 6

again, we have
0*In f(x;0) ,, Oln f(x;0) Of (x;0)] ,
/ { AR R a0 |4 =0

/[wm.a)ﬁlnﬂx;") U@ 070 1 )| o = 0

0000’ ’ o0 o0 T
O*In f(x;0) ,, dlnf(z;0)\* ,, ] _
O

EH)+ E(g®) =0
var(g) = —E(H).
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Let O(x1,...,2,) be any unbiased estimator for 6, then E[(z1,...,x,)] = 6
implies

/ / X1y ) f(2150) - - - fzp; 0)day - - - dxy, =0

[ [ s fwnit) Z; O T50) ...ty =1
E |:é($1, ,xn)Ezgl} =1

cov[é(xl,“,xn),zigﬂ FE(z1, ey zn)] - E(Sigi) = 1

cov [é(wl, ...,xn),Eigz} =1

Using the fact that ‘pé S ’ 1 and P .sg; \/var \/var ¥;g;) = 1, we have

var(0) > wr(lzigi) = mai(gi) = nE(gg) = nE(H) = L[1(0)]~!, where I(0) =

—E[H] is known as Fisher information matrix.
For univariate case, the CRLB for an unbiased estimator 6 is 1[I(6)]~!. For

multivariate case, the CRLB for an unbiased estimator  is [I(#)] ™. If an unbiased
estimator achieves the CRLB, then it is efficient, i.e., MVUE. The converse need
not be true.

4. Maximum Likelihood Estimators

(1) Regularity conditions:
D1: InL(x;0),g = 9ln gé(,x i6) JH= o7 g‘eg(e’f;e) ;
D2: E(g) =0;
D3: Var(g) = —E(H).
(2) MLE properties:
M1: consistency: plim O = 6;
M2: asymptotic normality: Oar — N{0, [1(6)]~'},
where I(0) = —E(H) = E(gg’) = Var(g);
M3: asymptotic efficiency: Oz is asymptotically efficient and achieves
the CRLB;
M4: invariance: the MLE of ¢(0) is c(0pL).
(3) Estimating the asymptotic variance of the MLE:
Using one of the following three alternatives expressions evaluated at

On1, to get Est.Asy.Var(0).
L) ||
0600 ||’

WL ||
d0o0" ’

-F

where
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(2)
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(6)

(7)
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5. Concepts on Hypothesis Testing

A test is a specification of a critical region whereas a critical region is the
region used to reject Hy.
Power function is the probability of rejecting Hy.
Significance level (size of the critical region, or the a level of the test) is
the maximum of the power function given Hy is true.
Hy is true (60 = 6y) | Hy is false (0 = 0,)
Reject Hy | Tyep I Error () | Correctness (1 — 3)
Accept Hy | Correctness (1 — «) | Type II Error (5)
The power function K (6p) is the probability of rejecting Hy given Hy is
true (0 = 6p), and the power function K (0 4) is the probability of rejecting
Hy given Hy is false (§ = 604). Denote the critical region by C, then
K(0y) =Pr(z € C;0 =0p) and K(04) = Pr(z € C;0 =04).
For a fixed o, we want to maximize the power 1 — (3, i.e., to maximize
the probability of rejecting Hy given Hj is false. Equivalently, we want to
minimize type II error, i.e., to minimize the probability of not rejecting
Hy given Hj is false.
C is a best critical region of size « if
(a) Pr(z € C;0 = 6y) = «;
(b) For any other critical region A of size «, i.e., Pr(z € A;60 = 6y) = «,
we have Pr(x € C;0 =04) > Pr(z € A;0 =04).
(Intuitively, C' corresponds to the highest power 1 — .)
Neyman-Pearson Theorem
Given Hy : 0 =0g and Hy : 0 = 0 4. If for some k> 0

L(0=00; .
() Fo=p2h < k,V¥z € C;

L(0=0p;x ~.
(b) Fo=p=2k > k,¥a € C;

(¢) Pr(z € C;0 =6p) = o

then C'is the best critical region of size « for testing Hy vs. Ha.
Intuitively, this theorem says that given the size if the sample likelihood under

H()Z

(1)

2)

the null hypothesis is minimal, relative to the alternative, for realizations inside the
critical region, and if the sample likelihood under the null is maximal, relative to
the alternative, for realizations outside the critical region, then the critical region
concerned is the best.

6. Hypothesis Testing Statistics
c(9) = q (J equations)

Likelihood ratio test statistic: (compute both the restricted and the un-
restricted model)

Under the null hypothesis, —2In X — x2(.J).
Wald test statistic: (compute only the unrestricted model)

W = [e(d) — a{Var[c(6) — a]} [c(f) —dl.
Under the null hypothesis, W - 2(J).
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(3) Lagrangian multiplier test statistic: (compute only the restricted model)

~ I
LM = (’)lnEHR)
00r

{T(0)} [—alggﬂi@] |

Under the null hypothesis, LM = x2(.J).
(4) Graphical representation of the three test statistics.

a0 In L(6)
R\ «(0)

LM{ }W _

A \d In L(6)
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CHAPTER 5

Matrix Algebra

1. Algebraic Manipulation of Matrices

For C(nxr) = Anxn)B(vxk), we want to write them into the format
of summation so as to facilitate the computation. But how should we
arrange the matrices into vectors?

If we write C = (¢ ... cx) in stack of columns, then we have ¢ =
Aby. In this process, we arrange matrix B in the same format of C so
that the two sides of ¢ = Aby are conformable. In writing the right-
hand-side into a summation, we can’t break by, so the only choice left
is to break up A while keeping the format of columns conforming with
cx. So we have to arrange A in the format of A = (a; ... ay) and each
element of by, will enter the summation individually. (Keep in mind the
usual regression function in matrix notation y = Xb.) Therefore, we have
Ck = ), buray,, and we say each column of C is a linear combination of
columns of A.

If we write C = (c'...c"")’ in stack of rows, then we have c” = a"B.
In this process, we arrange matrix A in the same format of C so that the
two sides of ¢™ = a"B are conformable. In writing the right-hand-side
into a summation, we can’t break a”, so the only choice left is to break
up B while keeping the format of rows conforming with ¢”. So we have to
arrange B in the format of B = (b'...b"")" and each element of a” will
enter the summation individually. Therefore, we have ¢" = )", a,ib",
and we say each row of C is a linear combination of rows of B.

For Xyxk, we want to write X’X into the format of a summation of
matrices. How should we arrange Xyxg? First of all, we realize that
each element of the summation is a K x K matrix. If we arrange Xy x g
as (x1...Xx), we are going to end up with 1 x 1 element for the final
matrix. Clearly this is not the result we want. So if we arrange Xy« x as
(xV..xN"), we will get what we wanted: X'X =3 x"'x".

A couple of rules:

(ABC) = C'B’A/;

(ABC)~! = C~!B~'A~lif all matrices concerned are nonsingular;

a’a =tr(a’a) = tr(aa’);

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC).

(The trace of a square matrix is the sum of its diagonal elements.)
A few rules regarding summations:

Yz = i'x;
1 (31—,
=X = (') 7hi'x;
Y2 = x'x;

i =

27
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(5)

5. MATRIX ALGEBRA

S(x; —7)? = (x —iz)'(x — iT);

E(xi = 2)(yi — 9) = (x —iz)(y — iy).
Define M = I — i(i'i)~!i’, which is an idempotent matrix, and we have
the following results.

M = 0;

x — iz = M'x;

Y(z; — 7) = iM% = 0;

Y(x; —7)? = (M%) (M%) = x'Mx;

S(x; — 2)(y; — §) = (M%) (M'y) = x'M'y.

(If M is an idempotent matrix, then MM = M; if M is idempotent
and symmetric, then MM’ = M.)

2. Geometry of Matrices

The K elements of a column vector can be viewed as the coordinates of a
point in a K-dimensional space. In particular, the two-dimensional plane,
R2, is the set of all vectors with two real-valued coordinates. This plane
has two important properties. R2 is closed under scalar multiplication;
every scalar multiple of a vector in the plane is also in the plane. R? is
also closed under addition; the sum of any two vectors in the plane is
always a vector in the plane. Now we define a vector space as any set of
vectors that is closed under scalar multiplication and addition.

A set of vectors in a vector space is a basis for that vector space if any
vector in the vector space can be written as a linear combination of them.
The basis of a vector space is not unique, since any set of vectors that
satisfies the definition will do. But for any particular basis, only one
linear combination of them will produce another particular vector in the
vector space. Note that exactly K vectors are required to form a basis for
RXK.

Although the basis for a vector space is not unique, not every set of K
vectors will suffice. That is because it may be the case that some of the
vectors are linearly dependent. A set of vectors is linearly dependent if
any one of the vectors in the set can be written as a linear combination
of the others. A set of vectors is linearly independent if and only if the
only solution to aja; + asas + ... +agag =0isa; = as = ... = axg = 0.
Otherwise, we can always choose one non-zero «; # 0 to scale all vectors
other than a; to reach the vector a;. Now we know that a basis for a
vector space of K dimensions is any set of K linearly independent vectors
in that space and that any set of more than K vectors in RX must be
linearly dependent.

The set of all linear combinations of a set of vectors is the vector space that
is spanned by those vectors. For example, by definition, the space spanned
by a basis for R is R¥. Consider two three-coordinate vectors whose
third element is zero. These two vectors don’t span the three-dimensional
space R? in that any linear combinations of these two vectors will have a
third coordinate of zero and any vector with nonzero third coordinate is
not covered. The plane spanned by these two vectors is called a subplane,
or two-dimensional subspace in R3. Note that this subplane is not R?; it
is the set of vectors in R? whose third coordinate is zero. By the same
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logic, any line in R? is a one-dimensional subspace, in this case, the set
of all vectors in R? whose coordinates are multiples of those of the vector
that define the line.

The space spanned by a set of vectors in R¥ has at most K dimen-
sions. If this space has fewer than K dimensions, it is a subspace, or
hyperplane. But the important point is that every set of vectors spans
some space; it may be the entire space in which the vectors reside, or it
may be some subspace of it.

We view a matrix as a set of column vectors. The column space of a
matrix is the vector space that is spanned by its column vectors. If the
matrix contains K columns, its column space might have K dimensions,
but it certainly can have less than K dimensions if not all K columns are
linearly independent. The column rank of a matrix is the dimension of the
vector space that is spanned by its columns. It follows that the column
rank of a matrix is equal to the largest number of linearly independent
column vectors it contains.

The column rank and row rank of a matrix are equal and the row space
and column space of a matrix have the same dimension. If the column
rank of a matrix happens to equal the number of columns it contains, the
matrix is said to have full column rank. Since the row and column ranks
of a matrix are always equal, we can speak unambiguously of the rank of
a matriz. For either the row rank or the column rank, we have

rank(A) = rank(A’) < min(#rows, #cols).

A matrix is said to have full rank if its rank is equal to the number of
columns it contains. Of particular interest will be the distinction between
full rank and short rank matrices. The distinction turns of the solutions
to Ax = 0. If a nonzero vector x for which Ax = 0 exists, A does not
have full rank.

In a product matrix C = AB, every column of C is a linear combination
of the columns of A, so each column of C is in the column space of A.
It is possible that the set of columns in C could span this space, but it
is not possible for them to span a higher-dimension space. At best, they
could be a full set of linearly independent vectors in A’s column space.
We conclude that the column rank of C could not be greater than that of
A. Similarly, we have the conclusion that the row rank of C could not be
greater than that of B. Therefore, we have

rank(AB) < min(rank(A),rank(B)).
In particular, for matrices A(yrxn) and By n), we have
rank(AB) = rank(A).

For any matrix A, we also have

rank(A) = rank(A’) = rank(A’A) = rank(AA’).
The determinant of a matrix is nonzero if and only if it has full rank.
For a diagonal matrix D g« k), its column vectors define a “box” in RE
whose sides are all at right angles to one another. (Each column vector

defines a segment on one of the axes.) Its “volume,” or determinant, is
simply the product of the lengths of the sides, i.e., the product of the
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diagonal elements of the matrix D. Two useful conclusions for general
square matrices D , C and scalar ¢ are:

|cD| = ¢ |D| and |DC| = |D|-|C]|.

Given a column vector y and matrix X, we are interested in expressing y
as a linear combination of the columns of X. There are two possibilities.

(1) If y lies in the column space of X, we shall be able to find a vector
b such that y = Xb.

(2) If y is not in the column space of X, then there is no b such that
y = Xb holds. What we can do instead is to find a b that produces the
smallest e such that y = Xb + e holds. That is, we are trying to find a b
such that the distance between y and Xb will be shortest. The length, or
norm, of a vector e is ||e|| = v/e’e. It turns out that e with the shortest
length must be perpendicular, or orthogonal, to Xb. We can then use the
definition of orthogonal vectors to find out the vector b. Two vectors a
and b are orthogonal, denoted as a_Lb, if and only if a’b = b’a = 0.

Note that the linear combination Xb is called the projection of y into
the column space of X. Suppose that the projection of another vector y*
shares the same projection with y in the column space of X, then how
can we determine whether y or y* is closer to its projection? We cannot
use the length of the residual vector e or e* to determine the closeness,
because the length of the residual vector will be affected by the lengths
of the original vectors. In this case, we would use the angle between the
original vector (y or y*) and its projection to determine the closeness.
The angle 6 between two vectors a and b satisfies

a'b
Tl - ToT
which takes care of the length of vectors.

(What will happen if y is orthogonal to the column space of X? The
trivial answer would be that the projection will be zero so that there is no
projection, meaning that we shouldn’t really regress y on X.) Add one
section on geometric representation of SST = SSR+SSE and F-statistic.

cost =

3. Miscellaneous

If A is positive definite, then for any nonzero vector v, then the quadratic
form v’ Av is also positive definite; if A is positive definite, so is A~!; if
A (nx k) has full column rank and N > K, then A’A is positive definite
and AA’ is nonnegative definite; if A is positive definite and B is a
nonsingular matrix, then the quadratic form B’ AB is positive definite.
Some important differentiation rules:

9Ax _ Al.

Baji{x ’

ox A’

6x8/)1(&x _ (A—I-A/)X;

Ox'A A,

9Aclx) _ ¢’ A’ ,where C = —8(;,(:,().



CHAPTER 6

Classical Regression Model

1. Basic Estimation

(1) Assumptions:

) linearity: y = X + ¢;

) identification condition: X (nxx) has column rank K

) conditional zero mean: E(g|X) = 0;

) homoskedasticity and non-autocorrelation: E(ee’|X) = o?I;
) non-stochastic regressors;

) normality of disturbance: £|X ~ N(0,0?I);

Typical violations of assumption (a) are: wrong regressors (such as
inclusion of irrelevant explanatory variables or exclusion of relevant vari-
ables), non-linearity or random coefficients. Multicollinearity refers to the
violation of assumption (b). Once assumption (c) is violated, there will
be an bias in the intercept. There may be many forms and shapes of
violations of assumption (d), but we only consider two special cases: het-
eroskedasticity or autocorrelated errors. Assumption (e) implies that it is
possible to repeat the sample with the same independent variables, and
some problems arise from the violation of this assumption. For exam-
ple, measurement error in independent variables, autoregression, or using
lagged values of dependent variables as independent variables, or simul-
taneous equation system in which dependent variables are determined by
the interaction of multiple equations. The assumption (f) is not manda-
tory in most cases. But without assumption (f), we often don’t know the
small sample properties of the estimators.

(2) y=Xp+e=Xb+e

Normal equations: X’e = 0 or X'Xb = X'y;
Coefficients: b = (X'X)~1X'y.

(3) Simple regression: y =a+fx+ec=a+bx+e

=y—bx; b= > (i — 7)Y — ) _ >(@ — @)y _ > xiy; — nIy
7 Z(ml - £)2 Z(.’L‘l — i’)2 Z;L'? —nz2

If e ~ N(0,0?), then we have

o2¥ax? o2
~ N —_t db~N — .
¢ (a’ n¥(z; — 5)2) o (ﬂ’ E(w; — 5)2)

(4) Regression with a constant term:

Ye=0Xe=0=x'e=0=ie=0)
y=7'b(y=Xb+e=iy=iXb+ie=y=1)
J=yF=y-e=iy=iy-ie=g=79)

<
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2. Special Matrices

(1) Residual Maker M = I — X(X'X)~1X’

My = e = e s the residual from regressing y on X, where e = y—Xb;

MX = 0 = 0 is the residual from regressing X on X,

Me=e=Me=M(y —§) =My — MXb = My = e;

Me=e=e=My=M(X5+¢e) =MXS+ Me = Me;

My = Me = Me =e.

In the special case of simple regression model, we have M? = I —
i(i'i) "'’ and My = e,where e = y —iy; M"i = 0; M e = e for regression
with a constant term since we have i’e = 0 for regression with a constant
term.

(2) Projection Matrix (Fitted Value Maker) P =1—-M

Py =y = ¥ is the fitted value from regressing y on X;

PX = X = X is the fitted value from regressing X on X; particularly,
PM = MP = 0.

(3) X'e=0,X =0,
de=y MMy =yMy=ye=€y=yy—b'XXb=yy—-37Xb.
(4) Matrix representation of simple regression with a constant term.

SST =S (y; — )% is SST = y’M°y in matrix notation, with degrees
of freedom n — 1;

SSR =S (4; — )% is SSR = §YM°y = $'M°y in matrix notation,
with degrees of freedom K — 1;

SSE =Y e€? is SSE = €e in matrix notation, with degrees of free-
dom n — K.

The degrees of freedom for €’e can be showed as e'e = ¢'Me and
tr(M) = tr[I — X(X'X)"'X'] = tr(I,)) — tr[(X'X)"1X'X] = tr(I,,) —
tr(Ig) =n— K.

(5) y=Xb+e=yM’y =3M°y +€e

We can get this result by pre-multiplying y by M° and then y’ and
use M% = e and X'e = 0,e’X = 0. Note that this is valid only for
regression with a constant term since MCe = e comes from a regression
with constant term.

_bX'M’Xb _ ee 5 g, €e/n-K)

R? = =p2  R2=1-— ,
y'M%y yM%y "YY y'M"y/(n —1)

To understand why the adjusted R? is necessary, let’s first consider
the fact that the inclusion of irrelevant explanatory variables can never
reduce R?. This is the case because the lean model is restricted relative to
the fattened model and the restrictions can only make it more difficult to
minimize the mean squared error. By throwing everything into the kitchen
sink, we can get a superficially large R?. The adjusted R? addresses this
particular problem by accounting for degrees of freedom. If an additional
regressor covers very little of the unexplained variation in the dependent
variable, then R? falls where as R? rises.

(7) b= (X'X)" X'y = f+(X'X)"'X’c and E(b) = 3, Var(b) = o*(X'X) L.
(8) For y = X;b; + Xsbs + €, by partitioned matrix rule, we have
b, = (X1'M2X1)71X1/M2y = (X1/X1)71X1/(y — X;3by)
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and VCZT'(bl) = 02(X/1M2X1)71
by = (X21M1X2)71X2/M1y = (X2/X2)71X2/(y —Xiby)
and Var(by) = o?(X,M;X5) !

3. Gauss-Markov Theorem

(1) The least square estimator is b = (X'X) X'y = 8+ (X'X)"X’e.
Let’s construct another linear estimator by = Cy = CXf + Ce. For
by to achieve unbiasedness, it is necessary that CX = I. Let D =
C — (X’X)~ !X/, then Dy = by — b and DX = CX — (X'X)"!X'X = 0.
Then by = [(X’X)"'X’ + D]y and DX = 0 imply that Var(by) =
o?[(X'X)~! + DD’], while we know Var(b) = o%(X'X)~1. Therefore,
Var(bg) = Var(b).

Conclusion: The least square estimator is B.L.U.E., and the minimum
variance linear unbiased estimator of w’/3 is w'b. Note that this theorem
holds regardless of the distribution of the disturbance.

4. Test Statistics

(1) Recall that for a bivariate distribution, we have E(Y) = Ex[E(Y|X)],
Cov(X,Y) =[Y,E(Y|X),Var(Y) = Varx|[E(Y|X)] + Ex[Var(Y|X)].
Interpretation again.

(2) Unbiased estimator 52 to 0%: S? = —-e'e = Est.Var(b) = S*(X'X)"1.

(3) t statistic:

_ bi—Br ~ M ~ V2 _ :
NG O N(0,1) and x*(n — K) imply that
(Or=B1) Vo2 (X' XK) e _ br —Brk ~ t(n — K).

V—K)S2 /[0 (n—K)]  /S*(X'X);}

(1) Critical region for a two-side test for by, given significance level A:

b — Bk

Hy : by = Br; Hy @ by, # Bris W

>ty
2

(2) Critical region for a one-side test for by, given significance level A:

Hy : by = By; Hy = by, > Bris——2Le > ¢y

V82X X))k 5}

Hotbkzﬁk;Hlibk <6}JSM <t As
2

VSR (XX) )

(3) Confidence interval for gy, given confidence level (1 — \) is

Pr(t ,\<M<t,\ =1-A\
(75\ 52(X'X);) 3

(4) <"‘j§)32 ~ x?(n — K) The confidence interval for o2, given confidence
level , is Pr(x2 < (”ELQ)SQ <xP) =

(5) % ~ F(K —1,n—K) for Hy : f2 = 0 (coefficients other than
the constant term) and € ~ N(0,02). The decision rule is that if the
F-stat falls in the critical region, or if the probability of “the F-stat falls
in the critical region” is less than the desired significance level, reject the
null hypothesis.
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5. Asymptotics

Definition of consistency: 0 is consistent for 6 if plim 6 = 6. According to
convergence in mean square, if lim E(0) =6 and lim Var(0) =0, then

we have plimd = 6, i.e., 0 is conslstent for 6. Paurtlcularly7 E(z) = p and
Var(z) = "—: implies that plimz = p.
Consistency of Brs regardless of distribution of disturbances: (plim B Ls =

B)

Assume that nILH;O % = Q, and Q is a positive definite matrix, then

we have s = B+ (X'X) 1 Xe = 5—1—(&5{)_1){7’5. Taking the probability
limits, we have plim 8. = 3 + Q_lplim(XT,E) = B+ Q 'plim w,where
W XT; E(w) = BE(X2) = 0, Var(w) = Var(X2) = (2)2X'X0? =
7% and lim Var(w) =0Q = 0.

By the deﬁmtlon of convergence in mean square, we have plimw =
E(w) =0.

Finally, plimBLS =B+ Q plimw = B.
Note that we don’t need assume normality here. What we need is
that the regressors are well behaved such that lim % = Q is a positive

n—oo

»

definite matrix. .
Asymptotic normality of 5;s regardless of distribution of disturbances:
Brs = B+ (X'X)"'X'e = g+ (FX)' %2 = Val(fes - f) =
(ﬂ)—l(X_’s)
We know that lim (£X)~1 = Q~! and need to find the limiting

n—oo . M

distribution of )\(/;—f .

Xe — nZe = /n®w = \/n(W — E(W)), since E(W) = 0.
Var(y/aw) = nVar(w) = 0*(XX), lim Var(y/nw) = 0°Q.

n—oo
By the central limit theorem, we have \/n(w — E(w)) 4 N(0,0%Q),

ie., X2 % N(0,0°Q) and thus Q71X % N[0,Q~ ( 2Q)QY, i.e,
—1
Vi(Brs — 8) L N(0,0°Q~ ):>5LS—’N[6> =1
In practice, it is necessary to estimate Q— with (X X) " and 02 with

—2<-. Note that we need not to assume normahty here. What we need is
that the regressors are well behaved such that hm (X X)-1—Qlisa

positive definite matrix.
Consistency of S2:

Since
5% = L-c'Me
= —Lo[e — &X(X'X) ! Xe]
—_n [e’_e,e’_x(ﬂ)le_’e]
T n—Kln n n n 1

we have plimS? = 1 - [plim(%) -0Qt0] = plim(E,TE). Assume ¢;
behaves well in the sense that the mean and variance of &2 are finite, we
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have plim(%g) = 02. Then plim S? = 02 and plimSQ(LnX)’1 =o2Q~ L
Note again that we don’t have to assume normality here. If we do, then
we can get the same result much easier: (n — K)=2 s = x*(n — K) and
thus E(S?) = 02 and Var(S?) = —4 Since lim_ Var(S?) = 0, we get

plim S? = o2, by the definition of convergence in mean square.

6. Delta Method and Inference
Est.Asy.Var(BLS) = S53(X'X)1
Let f(Brs) be a set of J continuous, linear or nonlinear functions of the
least square estimators, and let C = %;L;). By the Slutsky theorem,
plim f(Brs) = f(B)and plim C = 9f(8)/98' =T, then

2

f(Bs) = N[f(8),T(5Q HI'.
In practice, Est. Asy.Var[f(Brs)] = C[S*(X'X)~!]C. If any of the func-
tions is nonlinear, the property of unbiasedness that holds for B s may
not carry over to f(8rs), but f(fLs) is consistent for f(8).
Since Arg & N[B, 02%], we can construct the following statistic: ¢(n —
K)= Br =B .
[S2(X'X) 12
We also know that plim S2(%

X)f1 =02Q~1, then

g = —2=8 2 N(0, 1),
12-Q;12

5_ RBus — ) [PRXX) 'R (RBys — a)/
[(n— K)5?/0°]/(n — K)

_ (Rbys — @) [*RXX) 'R (Ris —q)/J

S2? /o2 :

Since plim(f—j) =1, we only consider the numerator. Hence we have
JE = (£YX(X'X) 'R R(X'X) 'R 'R(X'X) ' X/(£)
= (5)L(3),
where rank(L) = J. Therefore, we have JE < y2(.J). Particularly, when
J=1,F(1,n—K)% x*(1).
Another version of the same property is stated as the limiting distribution

of the Wald test.
If /n(BLs — B) 4, N(0,0%Q7Y) and Hy : RS — q = 0 is true, then

W = (Rfrs — q)'[S*R(X'X)'R'| " (RALs — q)

= JF %5 2(J).
Differentiate f L(z;0)dz = 1 with respect to 6 and use 89 =L 6(19“9L, we
get E( alnL f ande = 0. Differentiate this identity further with
respect to 9, we get Var(ag},]‘) = B(25k)? —E(%olge]f) =1(0).
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(7) Use the Neyman-Pearson theorem to find the critical region for the test
H() : Rﬁ —q= 0.

(RBarz — Q)IJR(X'X)_le]_l(RﬂAML -q)/J S OoF
(y —XBumr) (y — XpPumr)/(n — K) g

Note that when we assume normality, BLS = B wvr implies that it is the
conventional F-test.

7. OLS vs. MLE

(1) For y = X +¢, where ¢ ~ N(0,02I), we have the following set of results.

B:ML = (X/X)flxlva(ﬁML) = B,Var@ML) =0?(X'X)"!
Brs = (X'X)"' Xy, B(BLs) = 8, Var(Brs) = 0*(X'X) ™!
J%/IL _ e’e E(AQ ) _ n—K 2'Var(“2 ) 2(n nﬁ()a ’
6l = effx E(ULS) =0 Var(6ig) = QZK;

o = (70T L),

Conclusion: both BML and BLS are unbiased and efficient. &]2\4 . is

biased and 6% ¢ is unbiased, but 63, is more efficient than 6% ¢ although
none of them achieves the CRLB.
(2) Statistical Properties of Estimators

(a)
(b)

Brs and 624 have all the nice properties of maximum likelihood
estimators (MLE) under the assumption of normality.

The desirable properties of MLE:

M1: consistency: plim Orrr = 0;

M2: asymptotic normality: Oy — N(0,[1(6)]~
—E(H) = E(gg') = Var(g);

Ma3: asymptotic efficiency: 6y, is asymptotically efficient and achieves
the CRLB;

M4: invariance: the MLE of ¢(0) is ¢(0a1).

Since BLS = BML, we know that BLS has all the MLE properties.
Does 67 ¢ = S? have the same MLE properties?

E(S?) = 02, E(63;;) = nK 2 2 By the second property of
MLE, we have /n(6%,; — 02) = N(0,20%).

Then we have

D), where 1(0)

=(1-E)/n(63, — o) + %02
_K\N 4, K 2
=(1-2)N(0,20%) + waid
Asn — oo, & — 0, \/— — 0, we have z, % N(0,20%). In the
meanwhile, we know 0']2\/[ L= K 52 then
_ n—K K 2 K 2
= V- ( —0)+ Nl

:\/ﬁ( —a?).

Hence /n(S? — o?) 4, N(0,20%), i.e., 674 = S? has the same prop-
erties as 6%,;.



8. PARTITIONED REGRESSION 37

(3) Let 0prp be the MLE for 6, and let ¢(0) == [c1(0) c2(0) ... cx(6)]'.
By the invariance property of MLE, we know c(0) is the MLE for ¢(f).
How can we find the Asy.Var[c(f)] then? Refer back to G.4.11.6., we
have Asy.[nVar(z,)] = ¥ and Asy.{nVar|c(z,)]} = CEC’, where C =

%ﬁ’}), so Asy.{nVar|c(z,)]} = C{Asy.[nVar(z,)]}C’. Here we have

Asy{nVar[c(0)]} = C{Asy.[nVar(0)]}C’, where C = 8§é?). Therefore,
we have
Asy{Varle(@)]} = & - C lim (n[1@)]'}) ©

=1.¢ ( lim [1(0)/71]*1) c’

n—oo

(4) Wald test: Hy : f(8)=0;Hy : f(8)#0

= f(B){G( )[SQ(X' )GBYY T F(B)
~ (),
where .J is the number of restrictions and G(3) = %éé).

8. Partitioned Regression

If we partition the explanatory variables into two subsets, X; and X, we know
that three types of variations in explanatory variables are competing against each
other in explaining the dependent variables, namely, the variations of X; alone,
the variation of X5 alone, and the covariance between X; and X, if they are not
orthogonal. To get the coefficient vectors for Xs in the full model, we can take the
following steps that are equivalent to running the full model.

First, remove the variation caused by X; alone by regressing the dependent
variable on X;. Second, remove the covariance between X; and Xz by regressing
Xy on X;. Third, tease out the contribution by X5 alone by regressing the residuals
from the first step on the residuals from the second step.

(1) For a classical regression y = Xb + e, we have b = (X’X)"!X'y, and the
residual is e = My, where M =T — X(X'X)~!X'.

If welet X = x; and b = by, we have y = x1b1+e, by = (x1'x1) 11"y
and the residual is e = M1y, where M; = I — x;(x1'x1) " 'x;".

If we let X = (x1 x2) and b = (b} b}), we have y = bix; + bixs + €,
by = (1) 1x) (y — X2b3), b3 = (x4Myxz) L (x2'Myy), where e — M7y,
and M* =1 — (XQ/Ml)I(XQ/M1X2)71(XQ/Ml).

Under the special case where x; and x5 are orthogonal (so that
M;x3 = X3), then the coefficients associated with x; and x5 are the
same as the coefficients obtained from regressing y on x; alone and y on
xg alone, respectively.

(2) For a classical regression y = Xb + e, we have b = (X'X)"*X'y, and the
residual is e = My, where M =T — X(X'X)~!X'.

Suppose that X = X; and b = by, we have y = X1b; + e, by =
(Xl’Xl)_le’y where e = M,y and M; =1 — X (Xl’Xl)_lxl.

Suppose X = (X7 X3) and b = (b} b}), we havey = biX; +b5Xs+
e, bT = (Xl’Xl)’lxl’(y — ngg), b; = (X/QM1X2)71(X2/M1:Y), where
e = M*y and M* =1 — (XQ/Ml)/(XQ/M1X2)71(XQ/Ml).
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Under the special case where X; and X are orthogonal (so that
M;Xy = Xj), then the coefficients associated with X; and Xo are the
same as the coefficients obtained from regressing y on X; alone and y on
X4 alone, respectively.

If we regress y on X1, y = Xj¢; +u, then we have ¢; = (X;'X;) " 1X;'y,
and the residual is u = My, where M; = I — X;(X;'X;)"1X;. Note
that in u we don’t have the variation attributed by X; alone.

If we next regress each column of Xy on Xy, X, = X2 + Vi, then
we have Cy = (c;...cx), where ¢ = (X1'X1) !X 'x2 ; and the residual
matrix is V = M; Xy, where M; = I — X;(X;’X;)"*X;. Note that in V
we have removed the common variation between X; and X.

We then regress u on v, u = Veg+w, then we have cg = (V/'V) " 'V/u =
(Xo'M;X5) 1(Xo'M1y) and the residual is w = Myu, where My =
I-V(V'V)"'V' = M*. It’s clear now c3 captures the contribution from
the variation of X5 alone.

If we regress y on both X; and X, we should have y = X;(c; —
Cacs) + X3 - cg + w. It is easy to realize that cs = b}, and we have
the Frisch-Waugh Theorem as follows: The subvector b3 in regression
y = biX; +b3Xs +e is the set of coefficients obtained when the residuals
from a regression of y on X; alone are regressed on the set of residuals
obtained when each column of X5 is regressed on Xj.

If we set X2 = z in part (3), we have the following result: The coefficient
c on z in a multiple regression of y on W = (X z) is computed as ¢ =
(z’Mz) 1(z’My) = (z.'z.)"!(z.'y,), where 2z, and y. are the residual
vectors from least squares regressions of z and y on X; z, = Mxz and
¥« = Mxy.

If we set X; =i in part (3), we have M; = M" =TI —i(i"i)~!i’ and thus
u=Myy = y—igand v = MyX; = Xy—iX’,. Therefore, cs is equivalent
to the coefficients obtained from the regression y —iy = (Xo —iXs)cs +£.
This result can be stated as follows: The slopes in a multiple regression
that contains a constant term are obtained by transforming the data to
deviations from their means, then regressing the variable y in deviation
form on the explanatory variables, also in deviation form.



CHAPTER 7

Inference and Prediction

1. Single Restriction

Omitting a variable or equivalently adding an additional variable.

(1) Comparison on Variance:
(R): y = Xb, + e,
b, = (X'X) X'y and Var(b,) = o?(X'X) L.
(U):y=Xd+zc+e
(do) = [X2z) (X2)] (X2)y, Var(d o) = 0*[(X z)' (X 2)]71,
and Var(d) = Var(b,) + o?(X'X)"'X'zz'X(X'X)"!/(ZMz). Since
Var(b,) < Var(d), our conclusion is : restrictions reduce variance.
(2) Comparison on R?:
(R): y =Xb, + e,
(U)y=Xd+zc+e
We have e = y — Xd —zc and d = (X’X)"'X'(y — zc) = b, —
(X'X)~!'X'zc. Hence e = y — Xb, — [zc — X(X'X)"1X'zc] = e, — Mzc
and thus e’'e = e,’e, — c?z’Mz. Since e,’e, > e€'e = R? < R?, our
conclusion is: restrictions reduce R?.
(3) Test on the null hypothesis that the restrictions hold.

o (BB R - R
T -/ -K) =R/ K)

e, F(lyn—K) =

2. F-test on a Set of Restrictions

People often use t-test, F-test, and Chi-square test for making statistical infer-
ences. Note, however, these tests are valid for small samples only if the disturbance
terms are normally distributed. In the case of small samples with non-normal er-
rors, we have to rely on bootstrap or Monte Carlo techniques to obtain relevant
p-values.

Here is the intuition behind the F-test. Upon imposing a set of restrictions,
the minimization process becomes harder to implement and results in a larger
sum squared errors. The numerator of the F-statistic concerns about the “per-
restriction” increase of sum squared errors, and the denominator implies the “per-
error” contribution to sum squared errors. If the set of restrictions is not far away
from the truth, then the “standardized friction” shouldn’t be large.

Why do we care about degrees of freedom? If we were to explore a possible linear
relationship between shoe size and grade average point using only two observations,
we would obtain a bogus 100% fit as two points are needed to determine a line.
Adding another observation would reduce the fit but it remains large. To correct
for this type of bogus fit, we use only the number of "free" observations to compute
statistics.
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Null Hypothesis: RS = q

Let m = Rb — q, then E(m) = RE(b) —q=RS—q =0 and Var(m) =
Var(Rb) = RVar(b)R = ¢?R(X'X)"'R’. We have m ~ N[0,*R(X'X)"'R/
and m’'[Var(m)]~'m ~ x2(J), i.e., (Rb—q)'[0?R(X'X)"'R/|"}(Rb—q) ~ x?(J).

Since M x2(n — K), we have the following F-stat to test Hy: RS= q.

(Rb - q)'[*R(X’X)"'R'|"'(Rb — q)/J
[(n — K)$?/0%]/(n — K)
_ (Rb—q)/RX'X)"'R]"'(Rb—q)/J

F(J,n—K)=

ee/(n—K)
_ (Rb—q)[S’°R(X'X)"'R]"'(Rb — q)
= = .

F-test is valid for any sample size (finite or large sample) so long as disturbances
are normally distributed.

3. A Set of Restrictions
Null Hypothesis: R =q

(1) Comparison on variance:

(U): y = Xb + e (without restrictions)

b = (X'X) X'y and Var(b) = o?(X'X) L.

(R): y = Xb, + e, (with restrlctlons R5=q)

b, =b— (X'X)"'R[R(X'X)"'R/]7}(Rb — q) and

Var(b,) = Var(b)—o2(X'X)'R/[R(X'X)"'R/]"'R(X'X)"". Since

Var(b,) < Var(b), our conclusion is that restrictions reduce variance.

(2) Comparison on R%:

(U):y=Xb+e
(R): y =Xb, + e,
We have e, = y—Xb, = (y—Xb)—(Xb,—Xb) = e—X(b,—b), and
thus e,’e, = e’e + (b, — b)’X'X (b, — b). Since e,’e, > e'e = R? < R?,
our conclusion is that restrictions reduce R2.
(3) Test on the null hypothesis: RS = q
e.e, —ee= (b, —b)X'X(b, —b)
= (Rb — q)'[R(X'X)"'R']"'(Rb — q)
= o’m/[Var(m)] 'm.
Since (Rb—q)'[0?R(X’X)"'R/]7}(Rb—q) ~ x?(J) and (n—K)S? /5% ~
x2(J), we have
(ees —€'e)/]  (R*—RI)/J
ee/ln—K) (1-R%)/(n—K)
Consider the independence of the numerator and the denominator:
Rb—q=R[3+ (X'X)'X'e] - q = R(X'X)'X'e = T¢ and e = M.

It suffices to prove TM = 0, which follows from TM = R(X'X)"!X'[I —
X(X'X)"1X] = 0

F(J,n—K) =
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(4) Particularly, we have (13224%% ~F(K—-1n—K)for Hy: 8, =0
(coefficients other than the constant term). It is obvious that J = K — 1.
Since the restricted model will be y = ig + e, which has no explanatory
power, R? = 0, we get the conventional F' test.

4. Test a Subset of Coefficients

Fory = X 81 + Xaf2 + ¢, test Hy : B2 = 0.
(1) (R): y =Xibi.+ e, vs. (U):y=X;1b; +Xsoby + e
b, = (XQ/M1X2)_1X2/M1y and Va,’/‘(bg) = 02(X2/M1X2)_1.
(2) To test the null hypothesis, set up the hypothesis design matrix R as:
R =(0I) and q = 0. Hence m = Rb —q = (0 I)(by’ by') — q = ba,
which implies Var(m) = Var(bs), i.e.,

FAR(X'X) 'R = 0}(X'M; X)) & [R(X'X) 'R/ = Xo'M; Xo.
(3)

e.'e, — e =co’m'[Var(m)]"'m

= 02b21[02]_1X2/M1X2b2
= bQIXQ/M1X2b2.
Particularly, if we let by = ¢ and Xy = z, we have e,/e, — €'e =

c?z’Mz. Without surprise, this is the same result we get, after painful
work, for 1.(2).

(4)
(e*'e* — e’e)/J _ <b2/X2/M1X2b2)/J
ee/(n—K) e'e/(n— K)

F(J,n—K) =

The independence of the numerator and the denominator follows the
generalized case TM = 0, which we proved in 3.(3).

5. A List of Important Facts

Let subscript . denote results from the restricted model. Let T = R(X'X) "X/,
m=Rb —qand N=R(X'X)"%.

1)
b, =b - NR(X'X)"'R/|'m.
(2)
Var(b,) = Var(b) — o?(X'’X)"'R'[R(X'X) 'R/ 'R(X'X) ! or
Var(b,) = Var(b) — o*N'[R(X'X)'R/]"'N.
(3)
e.'e, —e'e = (b, —b)X'X(b, —b)
= (Rb — q)'[R(X'X)"'R']"'(Rb — q) or

e.e, —e'e = o’m'[Var(m)] 'm.
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(Rb — q)'[0’R(X'X)"'R]"'(Rb—q)/J
[(n — K)S5?/0?]/(n — K)
_ m'[Var(m)|"tm/J

F(J,n—K) =

e'e/[o*(n — K]
_ (Rb—q)[RX'X)"'R]"'(Rb—q)/J
N ee/(n—K)
_ (ee.—¢€e)/]
~ ee/(n—K)
(R? - R3)/J

- B/(n-K)
(Rb — q)'[S*R(X'X)"'R]"'(Rb — q)
J
- m/[S’R(X'’X)'R/| 'm
= 7 .
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CHAPTER 8

Functional Form, Nonlinearity, and Specification

1. Omission of Relevant Variables

(1) (PRF): y =X 161+ X902 +¢ vs. (SRF): y = X,b} +€*
We have

bl = (X1/X1)71X1/y
= (X1'X1) ' Xy (X1 81 + XaBa +€)
=B+ (X1'X1) ' XX b + (X1 X)X e

(2) E(b}) = f1 + (X1'X1) 71Xy X/

Define P12 = (X1'X;1)7!'X'Xy from Xy = X Py5 + w. Unless

P, =0, ie., X; and Xy are orthogonal, b} is a biased estimator for (.
(3) VCLT’(bT) = VCZT[(Xl/Xl)ilxllé‘] = 02(X1/X1)71.

If we use the correct SRF y = X;1b; + Xsby + e, we would have
Var(by) = 02(X;'MyX;)~ L. Tt is easy to see Var(b}) < Var(by), and
our conclusion is that although b} is biased, it is more precise than b;
which results from using the correct SRF.

(4)
e{,e*{ = y'Mly
= (X101 + Xof2 + &) M1 (X161 + Xo82 + €)
= (X2f2 + &) M1 (X2f2 +¢)
= Bo'Xo' M1 X 82 + ' Mye + 23,'X5'Mye

Hence E(e}’e]) = 32'X2'M;X5 32+ (n—Kj)o?. Hence our conclusion
is: (n—Kj)o? is a biased estimator for e}’e], and we cannot find a proper
S? to estimate 2.

(5) As we know, restrictions reduce R? because the minimization process be-
comes harder, i.e., Rf < R2.

Conclusions: If we omit relevant variables from the regression, our
estimators of 3; and o are biased. It is possible for b} to be more precise
than by which results from using the correct SRF, but this should be of
limited comfort since we cannot estimate o2 consistently, and we cannot
test hypothesis about 8. Moreover, the goodness of fit is reduced.

2. Inclusion of Irrelevant Variables
(1) (PRF): y =X181 +ev.s. (SRF): y =X1b; + Xoby +e
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8. FUNCTIONAL FORM, NONLINEARITY, AND SPECIFICATION

We have
by = (Xi'MX;) ' X' May
= (X1'MXy) "X "My (X481 +€)
= B1 + (X1’ M2X;) ' X' Mae

E(by) = 1 and our conclusion is: b; is an unbiased estimator for S;.
VCLT(bl) = Var[(X1/M2X1)71X1/M2€] = O'Q(Xl/MQXl)il.

If we use the correct SRF y = X;bj + e*, we would have Var(b}) =
02(X1'X;y)7 L. Tt is easy to see Var(b}) < Var(b;), and our conclusion
is : Although b; is unbiased, it is less precise than b} which results from
using the correct SRF.

Since in the true PRF, 3, = 0, it is obvious that (n — K7)o? is a unbiased
estimator for e}’e;.

As we know, restrictions reduce R?, i.e., R? < R%. We know the goodness
of fit is increased if we include irrelevant variables.

Conclusions: If we include irrelevant variables in the regression, our
estimates of both 3; and o2 are unbiased. But we get less precise estima-
tors. We also find the goodness of fit is increased.

3. Dummy Variables

Allow intercept difference only: y; = 81 + Boxio + [B3d; + €;, where d; is a
dummy variable. Then y; = 81+ 8222, when d; = 0; y; = (ﬁl —|—B3)+,62513i2,
when d; = 1.

Allow slope difference only: y; = 81 + Boxio + B3xs2d; + €;, where d; is a
dummy variable. Then y; = 81+ B222, when d = 0; y; = 51+ (824 33) 242,
when d; = 1.

Allow both intercept and slope difference : y; = (1 + Boxio + B3d; +
Baziod; + €;, where d; is a dummy, and z;od; is the interaction term.
Then y; = p1 + B2Tiz, when d; = 0; y; = (81 + B3) + (B2 + Ba)wiz, when
d; =1.

To test whether there exists intercept difference or slope difference,
construct the following null hypothesis: Hy : 83 = 0 or Hy : 84 = 0 or
Hy : B3 = B4 = 0, and use F-test of the form: %

Allow kinks to occur, i.e., a spline regression.
If we want to use dummy variables to express the following model:

a® + flage if age < t}
income = { o'+ Blage if t} <age <t}
a? + Bage  if age > t}

Let di = 11if age > t]; = 0, otherwise. Let do = 1 if age > t5; =0,
otherwise.

Set up the following model:

income = 1 + faage + d1d1 (age — t7) + dada(age — t35)

(using a special interaction term for each knot.)
Avoid dummy variable trap in two categories:

To analyze the models with different mean y; = u + ¢; and y; =
1+ 9+ €;, we can set up dummies in two ways:
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(a) with an overall intercept and a dummy y; = p + dd; + €;,then X =
(&9

(b) with no constant term and two dummy y; = wph; + éd; + £;,then
X=(g 2)

(c) if we set up the model with an overall intercept and two dummies,
then we fall into the trap. y; = 4+ d1h; + d2d; +€;,where h; = 1—d;,

then X = ( :; 2)1 ?2 ) which doesn’t have full column rank.

(6) Avoid dummy variables trap in Multi-categories.
Consider the model C; = 1 + Box: + &;.
There are two ways of setting up the seasonal model to avoid dummy
variable trap.
(a) include the overall constant and drop the dummy variable for the
fourth quarter C; = 51 + Boxs + 01Dy1 + 92 Dyo + 93 D43 + &4
(b) drop the overall constant and include the fourth dummy C; = Sz, +
01D¢1 + 92 Dyo + 93 Dis + 64 Dia + €4
Another example:
Consider the model: income = 81 + [Baage + €
Suppose there are four possible categories of education level that
might affect income, namely high school, BA, MA, Ph.D. We could set up
the model in the following way: income = 31 4+ f2age + 1 BA+ 0o M A +
0sPh.D. +¢
(7) Test on pooling sample:

Yi = Q1 + QQXZ'Q + ...+ aKXiK +€i, 1= 1, ,N with SSEUl
Yi = 01 +600Xso+ ...+ 0k Xixk +&5, 1 =N+1,...,N + M with SSEy-.
(a) construct the restricted model as the following:
Yi = P1+B2Xio+...+Br Xix +u; with Ho : ay = 01,9 = 02, ..., ax =

0K
F-test:

(SSER — SSEy)/K
SSEy/(N + M - 2K)

where SSEy = SSEy1 + SSEyo.
(b) construct the restricted model as the following:

yi = B1 + B2 Xiz + ... + Br Xik
+hiD; 4+ heD; X0+ ...+ hxg D; X; i + vy
Ho:hlzhgz...:h[(:()

~ F(K,N + M - 2K),

Wald test: R=1[ Oy I |, ¢=0.

(Rb — q)'[R(X'X)"'R'|"'(Rb — q)/K
e'e/(N+ M —-2K)

~ F(K,N + M - 2K).

4. Test on Pooling Sample

(1) Y; = ay + lelz' + €1i,i = 1, .y VS, Y = G2 —+ bQXQZ‘ —+ 621',7; = 1, ey N9
Ho : b1 = b2
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(2) Method I: suppose two sample disturbances have the same variance.
The test statistic is
by — bo

S2 52 ~ t(ny +ny —4),
\/Z (X1:—X1)? + > (X2i—X2)2

2 _ SSE\+SSE,
where S° = ywwy—

(3) Method II: suppose two sample disturbances have different variance.
The test statistic is
by — by
VEstVar(by) + Est.Var(bs)

~ N(0,1).




CHAPTER 9

Data Problem

1. Missing Observations on Simple Regressions
(1) Don’t attempt to fill the missing dependent variables.
. . . . A
(2) Simple regressions with constant y = ai+fx+e, wherey = ( zB ) , X =
XA ), and xp is missing. Consider the following two approaches.

(a) Replace xp with X4. This is equivalent to dropping the missing
observations in that Xz — X4 = 0 implies no change in the sample
moments. The only thing gets worse is the R? because of the more
number of observations.

(b) Fill xp with zeros and add a dummy variable that takes value one for
missing observations and zero for complete ones. This is algebraically
identical to simply filling the gaps with X 4.

2. Missing Observations on Multiple Regressions

yB
( XA ) ,Z = < ;A >, and xp is missing. Here are three approaches handling this
B

Multiple regressions with constant y = ai+8x+vyz+¢, wherey = < Y4 > ,X =

Xp
particular problem.

(1) Suppose that it were valid to impose a linear relationship between x and
z. Then if x = §z + u, the model may be rewritten in three equations:
ya =aig+ x4+ 724 +caxy
=0z4 +uaysn
aip + (v + B0)zp +ep + Pup.

Each of the first two equations can be estimated by OLS. Let Xp be
the predicted mean value of the missing xp obtained by using 5 and
zp. Consider combining the two data sets in one regression model as the
following,

(i) () ()
yB — B%xB 1B ZB

Assuming that v and z are uncorrelated (at least asymptotically), v can
be estimated by least squares. Note that although we have done nothing
to the original estimate of 3, some new information is being used to esti-
mate v in the second regression, which can be expected to provide added
efficiency.
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(2) Fill xp with zeros and add a dummy that takes value one for missing
observations and zero for complete ones. The regression model is now

ya ia XA ZA Dy €A
= . + =+ —|— + ,
(3 ) == )=o (8 )+ (5 )+ (3 ) (%)
where D4 = 0 and Dy = 1. Then we have the following results
Ya =g+ Bxa+72a+Ea = Fa— G —AZa =R
Y =oip +vzp +nip+ep =1 =¥p — & —4Zp = fRp
= fBRp.
(3) Fill xp with x4 and add a dummy as defined in Approach Two. The
regression model is now

ya ia XA ZA Da €A
=a A )+ 27 )+ - + :
(3 )= (i )= (32) (5 ) +2(5 )+ (55)
and we have the following results:
ya =oig + x4 +72a +Ea =
Ja— & =424 = PRa
yB =0aip + fXa +7zp +nip +ep =
i =¥p—&—AzZp — fRa = B(Xp — Ra).
We actually have a natural test statistic E(7)) = 0 for whether the data
Xp are missing at random.



CHAPTER 10

Generalized Least Square Model

1. Classical Model

This model is also known as a model with spherical disturbances, i.e., y =
XB+e, E(e) =0, E(e’) =0?. OLS: b= 8+ (X'X) 1 X’e. The OLS estimators
have the following properties: b is BLUE and CAN; b is also asymptotically effi-
cient assuming normally distributed disturbances; S? = ¢’e/(n — K) is an unbiased

estimator for o2.

2. Generalized Model

Here is a generalized model with non-spherical disturbances, y = X8+-¢, E(e) =
0, E(ee’) = 02Q.Recall that the OLS procedure minimizes (equally weighted) sum
of squared errors. The GLS procedure is utilized in presence of heteroskedasticity
or auto-correlation, by using a different weighting scheme for the weighted sum
of squared errors. In particular, the errors that are known to have large variance
themselves are assigned with a smaller weight, so are the errors that are known to
have large covariance with other errors.

If we still use OLS estimator, then b = 3 + (X'X)~'X’c implies the follow-
ing properties: b is still unbiased and CAN; b is no longer efficient even if the
disturbances are normally distributed; S? = €’e/(n — K) may be biased for o2.

The conventional estimated variances of OLS estimates are no longer unbiased
due to the nature of heteroskedasticity or auto-correlation, and the extent of bi-
asness (upward or downward) varies in different applications. Therefore, we can’t
draw proper inference based on OLS estimators.

If the disturbances are normally distributed, the OLS estimates are not the
same as MLE, but the GLS estimates coincides with MLE. Despite the superi-
ority of GLS over OLS in this particular context, the implementation of GLS
requires advance knowledge about the variance structure of the disturbances, a
rare case in reality. So people developed FGLS that uses the estimated covari-
ance matrix of errors from the OLS, and others simply use the "White-washed",
or heteroskedasticity-corrected, variance for the OLS estimates. One alternative
version of heteroskedasticity-corrected variance, known as Newey-West correction,
is also very popular.

Because the covariance matrix of the disturbance term is often large, it’s compu-
tationally hard to find FGLS estimators. An easier way will be to perform an OLS
on transformed data that make the errors spherical. In the case of heteroskedas-
ticity, the transformation is to divide all the data (including the constant term) by
the square root of the respective error variance. It’s demonstrated that the OLS
on the post-transformed data is equivalent to the GLS on the original data.
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We typically use the Durbin-Waston statistic to detect the auto-correlation in
the regression errors, whereas a D-W value of 2 indicates no auto-correlation. If
the null hypothesis of zero (first-order) auto-correlation is rejected, then we can
use an estimated p to transform the data as follows: replace all the data x; with
x¢— px_q for t > 2 and replace x1 with /1 — p221. The OLS estimates on the post-
transformed data boils down to the FGLS estimates for the original specification.
Be cautions of the source of auto-correlation though, as a mis-specfied model (say,
omitting a relevant explanatory variable) can lead to auto-correlation.

(1) Finite Sample properties of b in GLR model
(a) E(b) = Ex[E(bX)] =
If regressors and disturbances are uncorrelated, LS estimator is still
unbiased in GLR model.

(b)
Var(b|X) = E[(b— 8)(b - B)'|X]
=(X'X)H(X'QX)(X'X)!
o (X’X>_1 <X’QX> <X’X>‘
n n n n
If the disturbances are normally distributed,
N[B,a*(X'X)"H(X'QX)(X'X) .

(2) Asymptotic properties of b in GLR model
(a) Consistency

We have E(b) = 3, and Var(b) = Cad (ﬂ)71 (M) (ﬂ)il.

n n n n

If plimVar(b) = 0, according to the definition of convergence in

mean square, then we have plimb = (. Therefore, if plim (X—7;X>

X'Qx
n

and plim ( ) are both finite positive definite matrices, then b is

consistent for 3, i.e., plimb = .
(b) Asymptotic normal distribution

Brs =B+ (X'X)'X'e
=B+ (X'X/n) " (X'e/n) =
Vi(Brs = B) = (X'X/n) " (Xe/v/n)
Let phm( ) = Q. If ¢ ~ N(0,02I), then recall 6.25 and we

get X'e/v/n > N(0,0°Q) = Vial(Bus — B) = Q™1 (X'e/v/n) N[0,
Q (0?Q)Q ] = N(0,0%Q7) ie., Brs = N[B,0%Q 1 /n].

Note that we estimate Q= /n with (X’X)~! and o?with €’e/(n— K).
If e ~ N(0, 02Q), similarly we get X'e/\/n 4N [0,0 {phm (X QX)H

= Vi(Bs—B) = Q7' (X'e/y/n) % N[0,0°Q ' plim(X'QX/n))Q ]
le,BLS—>N[ (02 /n)Q1plim(X'QX/n)Q1].
(¢) Conclusions:
(i) In the heteroskedastic case, if the variances of disturbances are
finite and not dominated by any single term, then the least
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squares estimator is asymptotically normally distributed with
covariance matrix:

Asy.Var(b) = (02 /n)Q 'plim(X'QX/n)Q~;

(ii) In case that €2 is known,

/ -1 /2 / -1
Est.Var(b) = l (XX> . <X g QX) . (XX) ;
n

n n n

(iii) In case that § is unknown, using White heteroskedasticity con-
sistent estimator:

/ -1 2, / -1
Est.Asy.Var(b) = L. <X X) : (Zeixlxz> : (X X)

n n n n

=n(X'X)"1Se(X' X)L

(iv) Without specifying the distribution of disturbances, we cannot
use F statistic, and the likelihood ratio and Lagrangian Mul-
tiplier tests are also not available. However, we can use the
Wald statistic as well as asymptotic “t-ratio”.

(3) Efficient estimation when Q is a known, symmetric, positive definite ma-

trix: y = X3 + ¢,where ¢ ~ (0, 0%0Q).

Define PP’ = Q~ !, then we have P'QP = I.

Pre-multiply y = X8 + ¢ by P’, we have P'y = P'X3 + P's, i.e.,
Yy =X+ e

From E(e*e*') = E(P'ee’ P) = 0?P'QP = %1, we know y* = X* +
e*is the classical model, where * ~ (0,0%I).

According to the OLS rules, we have

X'PP'X)"'X'PPy
X'Q X)Xy,
E@®*) =5,
Var(b*) = o*(X'Q1 X)L

b* — (X*IX*)le*/y*
= (
= (

Hence we have

Bars = b = (X'Q7'X) 1 X'Q7 1y,
E(Bars) = E(b*) =,
Var(Bars) = Var(h*) = o2(X'Q71X) 7,
Gers = (" = X*0°) (y" = X*b")/(n — K)
= (y— XBors)'Q " (y — XBars)/(n — K),
E(6%1s) = 0"
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For the sake of comparison, we list the following OLS results:
Bors = (X'X) ' X'y,
E(Bors) = B,
Var(Bors) = o*(X'X) " H(X'QX)(X'X) 7,
6o1s = (y— XPBows)' (y — XPors)/(n — K).

(4) Properties of Bgrg inherited from b*:

(a) b* is unbiased, thus Bers is also unbiased;

(b) b* is consistent as long as plim X*' X*/n = Q* is a finite and posi-
tive definite matrix; BGLS is consistent as long as plim X*' X*/n =
plim X'Q~1X/n = Q* is finite and positive definite.

(¢) b* is asymptotically normally distributed , with mean 8 and variance
o2(X*'X*)~1 Bars is asymptotically normally distributed , with
mean 3 and variance o(X'Q71X) 71

(d) b* is MVLUE by Gauss-Markov theorem; fSgrs is MVLUE by ex-
tended Gauss-Markov theorem.

(e) Testing Hy : RB = q, we use the following F test.

F(J,n— K) = (Rb* — q)[S*™*R(X*'X*)'R|"Y(Rb* — q)/J
= (RBarLs — q)'[S"*R(X'Q' X) 'R (RBars — q)/J
_ (edlez —erer) )
e*’e*[(n — K)
(RBars —q) [0 R(X'Q'X) ' R'| " (RBgLs — q)/7
S5*2 /g2

S*2 =e*e*/(n — K)
=" — X" (y" — X7b")/(n — K)
= (y — XBars)'Q ' (y — Baws)/(n — K)

bi =b" — (X X)) RR(XYX*) 'R R — q)
= b — (X'QX) T R[R(X'QTX) T R (RBars — )
(5) Assuming normality, i.e., e ~ N(0, 0%§2), then we have the following MLE:
Bur = fors =" = (X' X) T X0y,
E(BuL) = E(Bars) = E(b*) = 5,
Var(Bur) = Var(Bars) = Var(b*) = 62(X'Q71X)7 1,
63 = (v — XBur)'Q (y — XBurp) /n.
Again, we find that both B M and BG Ls are unbiased and efficient. 612\/[ is
biased and 6% ¢ is unbiased.

(6) Estimation when € is unknown.
(a) Overall idea:
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(i) when Q is unknown, Sgrs = (X'Q2X)"1X’Q 1y is not fea-
sible. Hence we need a good enough estimator 2 for Q. If we
plug Q into BGLSv we get BFGLS = (Xlﬁle)ilx/Qily.

(ii) Suppose we know the structure of Q is Q@ = Q(f). If 0 is a
consistent estimator for 6, then by Slutsky theorem, we know
Q = Q(f) is consistent for Q(6), and we say € is good enough.

(iii) Moreover, for BraLs to be asymptotically equ1valent to Bars
so that ﬂFGLS have all desired properties that BGLS inher-
ited from bLS7 there are certain conditions to be satisfied:

phm(XQ XfX/Q;lX)—Oandphm(Xf/z_ X/\X}T_ZIE):O.
Of course, we don’t need to worry about those conditions so

far.

(iv) An important theorem: for Brars to be asymptotically effi-
cient, we don’t need to have an efficient estimator of 0, and
only a consistent one is required to achieve full efficiency for
Brars-

(b) As long as the information matrix is block diagonal, the GLS, FGLS
and ML estimators of § have the same asymptotically distribution.
Particularly, Asy.Var(Bu) = o2(X'Q1X)!

(¢) For the case of group-wise heteroskedasticity, to get the B MLE, follow
the following steps:

Step 1: get OLS estimator b for the pooling data;

Step 2: get ML estimator &7 for each group using &7 = e/ ey /n, and
eg =Yg — Xgb;

Step 3: get ML estimator B AL using

G 1re 1
Bur = lz ﬁXgX;] lz ﬁngg] ;
g=1"9 g=1"9

Step 4: if /3’ M1 has not yet converged, go to step 2 while substituting
b with 8y/r; otherwise, exit.
Notes for step 3: Refer back to 9.3 about grouped data:

bt = (55*/57*) ') [Z NgTyT g] [Z “gxgyg] ,
g=1

Where Zg,Yg are the grouped data mean. Since 03 = Uz/ng (suppose

o2 is the variance of disturbances for the ungrouped data), we use

/Ty as weight to get [,/lg0,4]* = o2
Here we have ng, = 0°/07, T, = Xg, Uy = Yy, since o2 will be
cancelled out, we can equally well normalize it to 1.

3. Heteroskedasticity
(1) For a heteroskedasticity model with o? = o?w;, we let P; be 1/,/w; so

that [0;/\/w;]* = o2
<) [pm (2)]

(2) OLS estimator for heteroskedasticity model
(a) Asy.Var(b) = [phm (X X)} plim (
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n
Assuming plim(X'X/n) = Q, plim(X'QX/n) = plim(+ > w;z;z;")
i=1

= Q*, we have b-> N[8, %Q_lQ*Q_l] and

Est.Asy.Var(b) = (X'X)~ szx o) (X' X))
=1
(b)
Var(b) = (X' X)"H(X'QX)(X'X) !
Var(Bars) = o2 (X'Q71X)7?

b is less efficient than BGLS~

(c) If the heteroskedasticity is not correlated with the variables in the
model, then at least in large samples, it is tolerable, although not
optimal, to use Est.Var(b) = S*(X'X)~! to estimate Var(b) =
(X' X)) HX'QX)(X'X) !

(d) One of the appropriate way of estimating Var(b) for OLS is White
estimator:

Var(b) = az(X’X)_l(X’QX)(X’X)_l.lazX’QX
n
_1 5" olxz!
i i Lidy-
=1

n
Define Sy = L 3° e?x;2, where ¢; is the i'" least squares residual .
i=1
Est.Var(b) = n(X'X) " 1Sy(X'X)1
(3) Testing for group-wise heteroskedasticity

Hy: 0} =..=0%(G — 1 restrictions)
G

Statistic: nlnS? — 3 ngInS? ~ x*(G — 1), where 5* = ¢’e/n,
g=1

Sj = eyey/ny are from grouped data.
(4) GLS when 2 is known
(a) For the case of Var(el) = o7 = o%w;, let P; be 1/,/w; so that

Var(e;i/\/w;) = 0. Or equivalently, diag(Q) = ( w1 w2 ... wy, )
= diag(Q~1) = (1/ wr 1wy . 1wy )

= diag(P) = ( 1/yw1 1/yw2 .. 1/ywn ),
P'y; = yi/\J/wi, P'w; = xz/\/Csz Ple; =g/ \/w;.

According to the formula of Sgrs for group-wise model, we have

bors = [(P'X)'(P'X)] 7 [(P'X) (P'y)]

() (£

) ()

where w; = 1/w; = P2.

We also name it as weighted least squares estimator.
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Note: Observations with smaller variance receive a larger weight in
the computation of the sums and therefore have greater influence in
the estimates obtained.

(b) In the case of Var(e;) = 07 = o222, let P;; be 1/x, so that
Var(e;/xy) = 0?. We have weights w; = 1/2% for WLS.

(¢) In the case of Var(e;) = 07 = oy, let Py;be 1/,/T so that
Var(e;/\/Tr) = 0%. We have weights w; = 1/zjfor WLS.

(d) The weighted least square estimator

n n
Burss = (z w) (z wy>
=1 i=1

is consistent regardless of the weights used, as long as the weights are
uncorrelated with the disturbances, but improperly weighted least
squares estimator is inefficient.

4. Autocorrelated Disturbances

White noise ¢; satisfies: zero mean, constant variance and zero covari-
ance between any two disturbances in different periods. This is also the
definition of covariance stationary or weakly stationary.
Suppose disturbances are homoskedastic, but correlated across observa-
tions, then E(eg’) = 02Q2, where 022 is a full rank, positive definite matrix
with a constant o2 on the diagonal.

Impose stationarity further, i.e., Qs is a function of |s — t|, but not
of t or s alone.

Auto-covariances: v5 = Cov(et,er—5) = Cov(etts, €t), particularly,
Yo =0

Auto-correlation: ps = v5/v0 = Cov(er,er—s)/\/Var(er)Var(ei—s),
particularly, pp = 1.
Stationary AR(1) Process: e; = pes_1 + ug, where |p| < 1, and u; is
classical.

Then E(g;) =0, 02 = 02 /(1 — p?), s = p°c2 /(1 — p?), (particularly,
Yo = 02), ps = p°.

1 p B P?;
Thus we have 02() = 1i’22 P 1 .
pT=1 T2 1

OLS estimators

If the regression doesn’t contain lagged dependent variable, then OLS
estimators are unbiased, consistent, asymptotically normally distributed,
and inefficient;

If the regression contains lagged dependent variable, then OLS esti-
mators are no longer unbiased or consistent.
GLS estimators (® = 0%Qis known.)

Bars = [X'@ XX 1y,
Var(Bgrs) = [X'@ 1 X] .
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/1 _p2 0 - 0
For AR(1), P’ = 7p 1 0 | then Var(P'e) = o7, and
0 0 - 1

PP =1 PO®P=1.

Note that this transformation matrix is called Prais-Winston one. If
we drop the first row, then the transformation is called Cochrane-Orcutt
one.

FGLS estimators (® = ¢%Qis unknown.)

Brars = [X'@7 X)X D1y,
VaT(BFGLS) = [X/i)ilX]il.

For AR(1), follow the steps:

Step 1: regress y = X3 + ¢ and get e;

Step 2 regress e; = pes—1 + uy and get p;

Step 3: & = ®(p = p);

Step 4: plug ®into the formula.
Durbin-Watson Test

For regression satisfying : (1) with a constant term; (2) without lagged
dependent variables.

Statistic:
>
(et - etfl) 2 2
_ =2 _ (e1 +e7)
d= —T —2(177‘1)7 T
3 ef > ef
=1 =1
~ 2(1 — 7"1),
where e; are the residuals from the original regression, and
T
> etei1
o =2
1= T )
> ef
=2

ie., 1 = pfor e; = per_1 + us.

Decision rule:

For testing positive autocorrelation, reject Hy : p = 0 if d < dp;
accept Hy : p = 0if d > dy; inconclusive if dp < d < dy.

For testing negative autocorrelation, reject Hy : p =01if d > 4 — dp;
accept Hy: p=0if d < 4 — dy; inconclusive if 4 —dy < d <4 —d,.
Durbin-H test:

For regression Y; = 51Y;_1 4+ B2 X; + €, statistic:

ho “VT/“ LTV (B) S N(0,1),

where T is the number of observations, and V(Bl) is the estimated variance
of the coefficient on Y;_1.




CHAPTER 11

Models for Panel Data

1. Panel Data Models

The major advantage of using panel data rather than cross sectional data is
that panel data provides us with great flexibility discussing different behavior across
individual. The conventional panel data model is: y;; = a; + 8'x;; +&;:. Note that
constant is not part of the K regressors in x;;. When «; is considered stationary
across time and fixed within group 4, the model is called fixed effect panel data
model; when «; is considered a group specific disturbance, the model is called
random effect panel data model.

2. Fixed Effects

(1) The regression model takes the form

Y1 i o --- 0 X1 €1
Y2 0 i 0 Xg &9
.= . a+ | . |8+ .
: o0 .0 : :
Yn 00 i X, En

or y = Da + X3 +¢. Suppose that we have T; observations in the i
group. We can run a regular least square regression on this equation to get
the estimators. However, under normal circumstances, we would have way
too many dummy variables to handle, and we take the partial regression
approach.

(2) Note that b = (X'MpX) 1(X'Mpy), where Mp = I — D(D'D)~'D’.
This is equivalent to run a regression from M py onto M pX. Note further
that Mp has the following nice feature,

MY 0 0
! 0
M, — 0 My, 0 ’
0 0 -0
0 0 . MOTn

Where_M% =1Ip, — (i)'’ = Iy, — 7-il’. Tt is obvious that M%, X; =
X; — X;i and MOTiyZ- =y; — y;i. Hence we could get b from a regression

using pooling sample deviations from their respective group means, i.e.,

y1— i X; — Xii e

y2 — i Xy — Xoi e
. = ) b+

Yn — gni Xn - Xni (S7%)

59
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Similarly, we have a = (D'D)~!D'(y — Xb). _ _
(3) Est.Var(b) = S*(X'MpX)~" and Est.Var(a;) = 5% + X;Var(b)Xy

2 _ i eie
5= ?1T7K
2 _ 4 Yireile
R =1-smSnmy:
(4) Hp : a; = 0 Vi We have

—.(Note the correction of degrees of freedom for n  a;’s.

\/m ~t(> " T; — K —n), but this is

not a useful hypothesis to test. Hy: a1 = ag = ... = a,(n — 1 restrictions)
R*-R? 1 n
We have 7 Iéz)/(Z )/(n 773 %y~ F(n—1,>" ,T; —n— K). Note that

under the null, we use the pooling sample data to get the efficient estima-
tors and R2. Note further that in the unrestricted model we could have
estimated the model with an overall constant and n — 1 dummy variables.
But this alternative method will produce the same results except that
the interpretation for coefficients associated with the dummies would be
different.
(5) Comparison on three alternative models
(a) Overall Model (OA): y;s = a; + /%t + €4t
Within-group Model (WG): y;: — 7. = 8 (xit — X;.) + €t — &
Between-group Model (BG): §;. = a; + 8'%;. + &;.
(b) Sample moments
Corresponding to three models, we have the sample moments as the
following:

s¢ —Zf ST k- R - R
Zz 1Zt L (it = X) (ir = );
SXX —Zl 12 (it — Xi.) (Xt — Z X,/ M$, X;;
Z:l ) Zt | (%it = X ) (yie = Gi) = Z X,'My.yi;
Sk = Zz 1215 & =R —X)s
D SID DA S )

Interrelationships:
Sy = SWE + 8BS and Sg)c =SYC¢ + s8¢
(c¢) Estimators: In terms of estimators for B, We have
b4 = (S¢%) 718Ky, b Y = (8K ¥)TISKS, and Y = (S§G) 'SRy
Interrelaionships:

b4 =FWEbWE + FPODPY, where FVC = (SY{ + 85%) 'SKY =1-FPC.

3. Random Effects

The regression model takes the form y;; = o+ x4 + u; + €;¢, where w; and
gi+ are independent disturbances with zero mean and variances o2 and o2. It is
further assumed that there is no autocorrelation inside e.

Consider the combined disturbance 7y = u; + €5, we have Q; = E(nn’) =

11 + O’QI and



(1)

f

4. PREPARATION FOR FACTOR ANALYSIS 61

0, 0 0
s_ |0 0 0
0 0 0
o 0 :

4. Preparation for Factor Analysis

Multivariate normal density
Let Y ~ N(uy,Xyy) with Yy« k, then the individual likelihood is

(Yilpyi, Syy) = —x— exp[—5(Yi — ;) Sy (Y — i),
(2m) 2 |Zyvy|2

and the sample log-likelihood is
InL=c—5FnSyy|—3 (Yi = iv,) Tyy (Y5 = py;)

=C— % 111 |Zyy| - %tT[E}_/%/Syy],

i=1

which is the so-called “Wishart covariance structure.”

Note that the representation of sample log-likelihood is valid only if
Yyy is the same for all Y;’s. If we do allow difference across Y;’s, then
we need use the MVN density function. For example, the MVN density
function for the model y; = X;8 +u;, or Y = (y1/, ..., yn'), is

f(yil0,Byy) = —x—1 exp[~ ¥/ Sy yvil
(2m) 2 [Syv|2
= —x— x5y — XiB) Sy, (vi — XiB)]
(2m) 2 [Suu|2

{ﬁ exp[%Xz-’E;(lxXi]} .
(2m) 2 |Bxx|2

Note that the part before the curly bracket is the sufficient statistic for
the density function, and in practice we maximize the sample likelihood
using only the sufficient statistic part. That is,
InL=c— % InX,., — %tr[Z;jSuu].
A single equation system
Assume y = f8’x + u. Let’s set up the model in terms of Y, where

Y = (y' x'), as the following, ¥ = (£'x+“). The parameter vector is
0 = (8 Lsz Zuu). Clearly we have the following system of equations
3(0) = Syy, where
3(0) = d Syy = v Y.

@)= 5.8 . S =l

We have an exactly identified system, one solution of which is:

x

Ty Sxx

Note that we stack x below y in constructing Y because we need the
estimators for 5. In the sections below where we consider only the variance
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component, we won’t stack x below y again since there is no need to
estimate (3.
A simple variance component

Assume y;; = & + ui,t = 1,..,T with 6; ~ N(0,0%) and u; ~
iid. N(0,02). In matrix notation, the T equation system is y; = §;i+u;.
The parameter vector is = (02 02), and we hypothesize that 7' = 2 is
enough to identify both parameters.

When T = 2, we have the following system of equations, 2(9) =Syy,
where
2 2 2
2(0) = ofirir’ + 0Ty = | 7} o %y g2
In this case, we have an identified system, one solution of which is 6% =
S21,62 = S11 — Sa1. The sample likelihood for individual i can be written
as one of following two representations:

L; = — eXp(_%yIZyyy)

Variance component plus AR(1)
The model is Yit = 51 + Uz't,t = 1,...,T, Uit = YUit—1 + Mit, with
6; ~ N(0,03) and n; ~1iid. N(0,07). In matrix notation, the T equation

2) and we

system is y; = &;i + u;. The parameter vector is 6 = (y o2 oy

hypothesis that T"= 3 is enough to identify 6.
2
Apparently, we have Var(u;) = 1%7_2 and the correlation matrix for
u; is

Loy
A=~y 1 v
oy 1

We also have

0_2
2(6) = UgiTiT/ + _71_1*72A

2 2 2
2 d 2 d 2 2_9q
Os + 1_7}/2 g5 +71_22 g +’Y T—2
2 2 2
= 2 Iu_ 24 In_ 2 In_
Os +71—’72 0-5+1—72 ([ +71—’72
2 2 2
2 2_9 2 g 2 g
o5+ =z 05tV 05t

2(9) = Syy implies that we have an identified system, one solution of
which is:

~2
¥ = % — 1,5772, = (S11 — Sa1)(1 +4),62 =S11 — 1—i,]y—2
Variance component plus M A(1)
The model is y;y = 0; + uit,t = 1,...,T, uyg = nix — YMit—1, with
8; ~ N(0,03) and n; ~1iid. N(0,07). In matrix notation, the T equation

2) and we

system is y; = &;i + u;. The parameter vector is 6 = (v o2 o,
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hypothesis that T" = 3 is enough to identify . Apparently, we have
2

g . . .
Var(uit) = =25 and the correlation matrix for u; is
T+

1 -y 0
A=| — 1 —y
0 —y 1
We also have
¥(0) = o3irir’ + (1 ++4H)A
o3+ (1 +~%)o2 o5 —op o2
= ag—’ya,% aé—l—(l;—*ﬁ)aﬁ Ug—’yaﬁ b
05 Os — 70y Os + (1 + )07]

3(0) = Syy implies that we have an identified system.

5. Regression Based Factor Analysis

Model with K indicators A\, and one factor ¢
The model is y;x = A\pd; + wig, with 6; ~ N(0,02) and u; ~ N(0,9),
where () is a diagonal covariance matrix for u; with heterogeneity. In
matrix notation, the K equation system is y; = AJ; + u;. Let’s normalize
A1 = 1 and consider the case where K = 3. The parameter vector is
0= (X2 X303 02 0o, 00.).
We also have
0(% + 031 1- )\203 1- )\30§
2(9) :G'g)\AI'FQ: 1 ')\20’? O'g—i‘a'zz /\2)\30’%
1- X303 Aodsoy  o0f 402,

3(f) = Syyimplies that we have an identified system, one solution of

S hotee M. — Sso Y. S ~2 _ S31S01 22 ~2 A2
which is: Ay = g’gif,/\g = gg,aé = 4153“2%0”1 = Sy1 — 05,0, = S22 —

A362,62 = S35 — \362.
Multiple indicator multiple cause (MIMC) model with K indicators A
and one factor F' with L regressors X.

The model is y;r, = A\ F; + u and F; = 8'x; + 6;, with 6; ~ N(0,03)
and u; ~ N(0,9), where  is a diagonal covariance matrix for u; with
heterogeneity. Note that x; is of L-dimension. The model above can
be rewritten as y;; = Apf'x; + Apd; + w;p, or in matrix notation, y; =
A3'x; + \o; + u;. Let’s normalize A\; = 1 and consider the case when
K = 3. The parameter vector is § = (A2 A3 03 02 02, 02.).

If we define 0% = 'Y, + 02, we also have
$(0) = A3'Z0eBN + X2\ +Q
=XoZN +Q
O’% + 051 1- )\gag 1- )\30'§
= | 1-X0f 0% +o0L, Xdso;
1-X305  XoXsof  op+oq,

3(0) = Syyimplies that we have an identified system.






CHAPTER 12

Simultaneous Equations Models

1. Simultaneous Equations Model with a Single Observation

(1) Original Model
By, + T'zy = ¢ where

Bir Pz - fPic YT Y12 MK
B— 521 522 52(; = Y21 Y22t 2K
Ber Ba2 -+ Boa Ye1 VG2 tt VGK
Y1t Tt
Yt = Yat , Tt = w2t )
YyaG TGt
with
E(egt) =0,
E(egteqs) = 0 for t # s,
BE(e2;) = 04q,
(sgtsht) Ogh for g,h = 1, ,G
011 012 ' 01G
021 022 032G
B(ael) =) =
0G1 OG22 ' O0GG

(2) Reduced Form

By +Taxy=¢ =y = —B ' T'z; + B e, = vy = lxy + vy, where

I=-B"'T,
vy = B ey,
11 T2 (s Te
I= 21 22 b Te ,
T™G1 Tg2 - TGG

BE(vw))=B~'Y (B =q.
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2. Simultaneous Equations Model of Full Observations

(1) Original Model: BY +I'X =¢
(2) Reduced Form: BY +IX =e=Y =-B ' IX+B le =Y =1X+V
where II = —B~!'T and II are the same as that in the SEM of a single

observation, V.= B~ 'e. plim (LTX) = @, plim (XT%) = 0,plim (%) =

S and plim (%) —BUSB-! =, plim (X_TV) -0

3. Identification Conditions

(1) Order Condition (Necessary Condition)

Let R be the number of restrictions within the considered equation,
the order condition is R > GG —1, since we normalize one of the coefficients
associated with endogenous variables to be -1.

(2) Rank Condition (Necessary and Sufficient Condition)

Given a considered equation, find the restricted parameters within
that equation, select all columns containing those restricted parameters
and form a matrix, the rank of this matrix should be equal to G — 1.

4. Example #1

Yit | Yot | Y3t | Z1t | Z2t | 73t

Eq. 1| =1 | B2 | P13 | 71 |72 | 713

Eq. 2| B21 | =1] 0 |71 | 0 |73

Eq. 3|B31| 0 | =1] 0 {3 O

For Eq. 1: R=0,G — 1 = 2 It fails the order condition, thus is not identified.
R=2

For Eq. 2: ,G —1 =2 It passes the order condition. The selected matrix
is
P13 V12
0 0 ,
-1 V32

which has rank 2, then it also passes the rank condition. Thus Eq. 2 is just

identified.
For Eq. 3: R =3,G —1 =2 It passes the order condition. The selected matrix

is

Bi2 1 M3
=1 71 73 |,
0 0 0

which has rank 2, then it also passes the rank condition. Thus Eq. 3 is potentially
over identified by 1.

5. Johnston’s Approach

II = — B~ 'Timplies BII +T =0, i.e., ( B T ) ( ? ) =0.

1

Design ®; as (G + K) x R to represent the restrictions imposed on the it"
equation. (Not like the design matrix R in Chapter 6, where we have one row for
each restriction, here we set one column for each restriction.)

LetAE( B T ),WE(H),thenAWZO.
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Let a; be the i row of A, then the i equation implies a; ( ®; W ) =
( Or Ok ), where a;®; = Op are the set of R restrictions, ando;W = Ok
are K equations coming from AW = 0. In «;, the parameter associated with the
normalized endogenous variable is set to be —1. We have R + K equations and
G + K — 1 unknowns.

Order conditionis G+ K —1< R+ K,ie, R>G— 1.

Rank condition is Rank ( ®; W ) =G+ K — 1 or Rank (A®;) = G — 1.

[Essentially, A®; is the selected matrix in 3.(2)]

6. Kmenta’s Approach

BII+T =0= (fu Bz - fig ) =—-(r1 m2 - mx )ie,
B1I1 = —~; for the first equation.
Let 2 stand for endogenous variable, and * stand for exogenous variable.
G?is the number of included endogenous variables;
G?2is the number of excluded endogenous variables;
K*is the number of included exogenous variables;
K**is the number of excluded exogenous variables.
Partition matrices properly as following:
Ax JAC T
Br=(B2 02 ), m=(~ry O0™), II= < EAA* EAA** >

HA* HA**

Thus BIH =N lmpheb( ﬂA OAA ) < HAA* HAA** > = _( 7* o )a
ie., BATIA* = —* and SATIA* = O**.

From BAIIA** = O**, we know that we have K** equations and G® — 1 un-
knowns.

Order Condition: K** > G2 — 1, i.e., G® — 1 out of K** equations must be
independent.

Rank Condition: Rank(II***) = GA — 1.

After finding /3 from this system of equations, we can use SAIIA* = 4* to find
7 correspondingly.

7. Indirect Least Square

Step 1: Use either Johnston’s approach or Kmenta’s approach to solve for
and v in terms of IL;;;
Step 2: Run OLS regressions on the system of reduced form equations and get

A~

Hij;
Step 3: Replace 11;; with ﬂij to get B and 4. By Slutsky’s Theorem, we know

both B and % are consistent estimators.

8. Two Stage Least Square (TSLS)

YB 4+ XI" = ¢ = Y = XII' + V. In particular, the first equation is: y; =
Y161 + X1v] + €1, where y; is the normalized endogenous variable in the first
equation, Y7 is the included endogenous variables except the normalized one in
the first reduced form equation, X; is the included exogenous variables in the first
equation.
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From Y = XII' + V, we also have

(yl

Iy, 1y, T
now)=(x %) (gt pR e )e(n non),

where Y5 is the excluded endogenous variables in the first equation; X5 is the
excluded endogenous variables in the first equation; IT’ is the blockwise coefficients
matrix, in which the second row of blocks is for excluded exogenous variables and
the first row is for included exogenous variables. Also note that the first column of
blocks consists of parameters in the reduced form for y;. Similarly, the second and
third columns are for Yjand Y5, respectively.

Essentially, we have

(1)

3)

1
o
1
(n 7 Y, X1 Xy ) 0 =e1.
-1
0

!
Let Z; = ( Yi X, ) and of = (f} ),thenyl = Y168, + X1vi + &1
1

implies y; = Z1af +€1.
If we use OLS, &, o6 = (Z121) "' Ziyy = o) + (Z121) " Zier.

After painful work, we find plim (Z1€1> # 0, thusd] is inconsistent

for of.

Actually, we would expect this result from the fact that part of the
regressors Z1, namely Y7, is stochastic, which violates our classical as-
sumption of “non-stochastic regressors”.

From

My, I, II
now)=(xn %) (g B R Je(n o von).

!
we know Y1 = ( X1 X5 ) < Lt )+V1 = XTI, + V;. Thus by OLS, we

1T,
have IT, = (X' X)~1X'Y;y, Vi = Y1—XII}, and X'V} = 0. Substitute ¥; =
XTI, + V4 back into y; = Y154 —I-)A(wi +e1, we get y = XTI,B; —th%f‘_
g1 + V181 Using the estimators Il and Vi, and the fact that XTII, = Y7,
we get y1 = Y18, + X179} + (e1 + Vi3}). Let Z; = ( i X ), then we
can use y1 = Z10; + 1 + Vi3 to get 5/17TSLS = (ZZ2)) Y Zy = o) +

A R . A R A i
(Z,20) 1 Zley + (2, 20) 2 Z1VaB). Since X'Vi =0, ZVy = < Y > Vi =

X1
( I, X’ )Vl = 0. Thus & al TSLS =

2) 7\ Ziyy = o+ (21 20) " Zey.
Xi

(7}
Since plim (Z%?) = plim ( Xlal ) 0, we know that & 041 is consistent

Y] Y1 Y X, )

for &}. Var (041 TSLS) =ot(Z12:) 7" = o < Xy XX

Procedures of TSLS:
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Stage 1: a. run OLS regression on the reduced form equations Y; =
XH2 + V1,
b. get Hg, Vi and Yl,
c. get Zl— ( Vi Xi )

Stage 2: a. run OLS regression on the structural equation y; =
Zha +e1;
b. get consistent estimators &LTSLS = (212 2.

Note: From y; = Y13 +X 17} +(e1+Vi8}), we know y; — (Y1 5+ X14})
is not the correct residual associated with the disturbance term for the
first equation e1, and the correct one should be y; — (V18] + X149, + V1 3},) =

— (Y1 + V1)B + XaH] = 1 — (YaB) + Xa4)).

9. Example #2

Vit | ¥oe | 1 | Xop | X3¢ | Xat
Eq. 1| =1 | Bia|vi1 | m2| 0 | 74
Eq 2| Bor | =1 [721] 0 |723] O

Reduced forms:

y1e = i1 + iowos + izwss + Migway + vig
Yor = a1 + Ioowos + Mazwss + agay + voy

Stage 1: run OLS on the reduced form equation for Y7, here Y7 = yo;, and save
the fitted values Yl = o¢;

Stage 2: run OLS on the structural equation for y;, and replace yo; with goy,
ie., yir = Brafor + Y11 + 112T2t + Y14Tar + €1t

Note: When we are doing TSLS like this, we will get a wrong residual vector,
which is much less than the correct one. (How do we know it is much less? It
should depend upon the sign of 515.) Since when we run regression y1; = S1292: +
Y11 + Y12T2t + Y144t + €1, We didn’t do any operation to the residual term, which
ends up with y1; — (,6’12;92,5 + 11 + F1222 + F14T4:), whereas the correct residual

term is y1; — (Br2ve: + 911 + Y1222 + F14%as)-

10. Instrumental Variable (IV) Approach

1 =Y101 + Xiv +e1 = Zia) + e

Our problem is that plim (Zlgl) # 0 so that the OLS estimators are not
consistent. As the instrumental variable approach indicates, we need to find a

proper proxy W for Z;, which satisfies plim (W W) = > ww> plim (W Zl) =

T
> wz,» plim (W 51) =0.

We find that W = Z; = (Yl X1) s§tisﬁes S}lCh a need. Thus we replace
&Il,OLS = (Z,Z,)"1Z}y1 with &Il,IV = (Z1Z,)71Z]y1. Note that the TSLS es-
timators are &Q,TSLS = (Z171) " Z}y1, and we can prove Z,Z, = Z}Z; so that
&) v = &) rgrs- The proof is the following:
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o AT 5, Y/v, VX :
Since Z1Zy = | b LY dZ1zv = Lo v |, it suffices
tmee 2121 (X{Yl x| x, ) e aa Xy, xix, )0

to prove Y{¥; = Y/Y; and Y{X; = Y{ X1, which follow the fact that :

YV =Y{(Y1 — V1) =YV, —ILX'V, = Y]V, (X'V; =0).
ViX) = (Vi -V X, =YX, —V/X; =YX,

R 905 Y'Y, Y/X,
Var (a'LIV) =0l(21Z))" = o} < X}lyl X}in )

11. Aitken’s Approach (Given by Dhrymes)

o =Y18+ X1 +e1 = X'y = X'VB) + X' Xy + X'y

Assume plim (%), plim (X;Yl), and plim (X;fﬁ) are well behaved, and
plim (X 51) =0.

We get Var(X'e;) = o?(X'X).

Invent P such that P’X'XP = I and PP’ = (X’X)~!, then we have P'X'y; =
P'X'Y18, + PX' X174 + P'X'eq, with Var(P'X'e;) = 031k.

DeﬁneP'X’yleVl, P/X/&‘lET'l, RlE( P/X/Y1 P/X/Xl ):PIX/Zl.

W1 = Riof + riimplies that &} , = (R{Ry)"'R{W) = o + (R{R1) ' Ryr1.

We also can prove that &) 4 = A & 1y

We have Ry = P'X'Z,, Wi=PX'y,, PX'XP=I, PP =(X'X)"
thus R, R, = (P'X'Z,)(P'X'Z,) = ZXPP'X'Z, = Z\X(X'X)"\X'Z1, R\W, =
ZlXPP’X’yl ZX(XX) X'y

Then &4 = & pgrs = & 1y = [ZIX (X' X)X 2] Z) X (X' X) " Xy,

/ _1 !
From af 4 = o+ (R R) " Riry, we have VT(af , —ol) = (&2 ) (L),

T

ptim { [VT(1.4 - )] [VTata o]}
(R’lRl)_l (R’lrl) <r’1R1> (R’lRl)_l

T JT ) \VT T

RiR\
_ 2 li 141
oip 1m< T

(Since plimryr) = plim P’ X'e1 ey X P = o31)

RIR )\ 7!
2plim | —=2 .
0,01p 1m< T

-1
oy oo [ YIX(XX)TIX'YD YIX(X'X)TIX'X
Bst.Var.(vTa 4) =Toy ( XIX(X'X)7'X'Y) X{X(X'X)T'X'X,

= plim

\/T(&/LA—O/I)ﬂN

(Substitute Z; = (Y1 X; )into RiRy = Z| X (X'X)"1X'Z;.)
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52 — (y1 — Y18 — X139 (1 — V1B — Xu4})

1= T =eler/T
(or replace T with T — G® — K* +1)
Y. B — XAV — Y B — XA
&gh _ (yg gﬁg g'Yg) (Yn hﬂh h'Yh) _ e;eh/T

T

12. Three Stage Least Squares

Using Aitken’s approach, we get consistent estimators OA/L 4 for equation 1 by
doing regression Wy = Rjaf + r1. If we do the same procedure to every equation,
we have W = Ro/ + r, where

L4} ol r1 R, 0 .. 0
W = W2 70/2 06/2 = ) 7R= 0 R2 ... 0
Wea O/G rg 0 0 ... Rg

Then d4g; g = [R'V'R]"'R'V~'W. (Here we are using GLS estimators for-
mula.)

O'%I 012] Jlgj
2
V= E(TT/) _ 0'21[ 02.[ JQGI _ Z@I
og1il ogol ... O‘é

The corresponding GLS estimators are:

Shss = IR(S @DRR(Y oDW.

-1
2 . R(X'®DR
VT (ip g — o) 224 N {0, plim <—(ZT 1) )
To get the FGLS estimators, following suggestion by Zellner and Theil, use
TSLS residuals to compute ) : 67 = efe,/T and G4, = €en/T.

13. Comparison of Methods of Regressing SEM

First of all, we know OLS estimators are not consistent, and indirect least
square estimators are consistent.

Second, if we consider one equation at a time, this method is called limited
information method. Note that TSLS, IV, and Aitken estimators are exactly the
same. Also note that TSLS estimators are asymptotically equivalent to the Limited
Information Maximum Likelihood estimators.

Finally, if we try to consider the system of equations simultaneously in order
to capture the cross-equation correlation, this method is called full information
method. We can use either 3SLS or Full Information Maximum Likelihood estima-
tors, which are asymptotically equivalent.



72 12. SIMULTANEOUS EQUATIONS MODELS

14. Testing

(1) Test particular parameter:
Using Aitken’s approach, we have W1 = Rjaj + 71, and &) 4, =
(RllRl)_lRllwl.

s RiR\
VT (&) 4 — af) Ay N lO oiplim (1T1)

b\ —1
We can estimate o?plim (RlTRl) as @ = T63(R)R1)~t, which is a
(G2 — K*) x (G* — K*) square and symmetric matrix.

The so-called “T-Statistic” is: “i—2Li A, —= N(0,1).

vV (I)l 7.7./T

Denote by 71 the residual for regression Wy = Ry 4+ r1. Then
71 = [Ix — Ry(RyRy) "' R}]r1, and
i =7l — Ri(RiR) ' RyJrs =5 x*(v).
v =trace[lx — Ri(R\R)) 'R} =K - K*—(G*—-1)>0

This is for over-identified equation, i.e., v is the degree of over-identification,
then we have the alternative t-statistic:

A /
Qy —Qp Asy

(R Ryt v

t(v).

(2) Test identification problem:
Recall the set-up of Kmenta’s Approacch:

BII4+T =0=
( Bii Bz -+ Pic )HZ—( Y1 Y12 0 MK )J.e.7
pill = —m
Let 2 stand for endogenous variable, and * stand for exogenous vari-

able.
G?is the number of included endogenous variables;
G~%is the number of excluded endogenous variables;
K*is the number of included exogenous variables;
K**is the number of excluded exogenous variables.
Partition matrices properly as following:

A AA * sk HA* HA**
51:( B @ )7 ’71:( Y 0 )a = [[AA*  IAA=x .

Thus 111 = —v; implies
HA* HA** . .
(ﬂA OAA)(]:[AA* HAA**>_(7 @ )a
ie., fATIA* = —~* and BAIIA* = O**.

From AIIA** = O**, we know that we have K** equations and G*—1
unknowns.
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Define ¢ = G2 — 1. Considering the rank condition, we have the

following:

If Rank(II***) = g, then the rank condition satisfies, and we can

solve for B2 uniquely;

if Rank(IT»**) > g, then the rank condition fails due to too many exclu-
sion, and the test for this situation is called “zero restriction test”;

if Rank(I1**) < g, then the rank condition fails due to too little inde-
pendent relations, and the test for this situation is called “rank test”.

(a)

Rank Test

Hy : Rank(IT***) < g.i.e., not identified; H 4 : Rank(II***) = g, i.e.,
identified.

Let G® =1+ G¥. Let y; be the normalized endogenous variable.
Since & = ( —1 f{ ), where 7 is the coefficients associated
with Y, in the first structural equation, S2AIIA** = O** implies
( -1 By ) ﬁw** ) = O™, where 7** is the single row of co-
efficients corresponding to y; in the reduced form, and I1¥** is the
coefficients block corresponding to Y; in the reduced form.

Thus BYTIP*™* = —7** implies that Rank(IIA**) = Rank(I1***).
Then we have the alternative set of hypothesis: Hy : Rank(I1¥**) <
g,i.e., not identified; H 4 : Rank(II¥**) = g, i.e., identified.

Since we have totally g + 1 included endogenous variables, thus we
have g+1 possible ways of normalization. Only if all of normalization
fail the rank test, can we say the considered equation fails the rank
test.

< ~\—T/2
The likelihood ratio statistic is A\ = (1 + ¢g) , and the asymp-

asy

totic distributions of the statistic are: —T-In(Ax) —% y2(K**—g+1)
or (ﬁg . KZ:%{;_I 2, F(K*™ — g+ 1,T — K), where ¢, is the small-
est root of |W(;lk — pWAA*| = 0, and W22 = Y'MY, Wi =

Y{MsY1, M=1-X(X'X)"1X',

My =T—-X(X]X1)"'X], My= M, — M.

The decision rule for this test statistic is: reject Hg if (ﬁg is signifi-
cantly larger than 0.
In particular, if G = 2, then we have exact distribution of the test
statistic in the sense of the following: G =2 = G¥ = 1 and g =
1= TI¥** is 1 x K**, then Rank(II¥**) < g is equivalent to
Rank(I1¥**) = 0. Then we can use Wald test to test the elements of
I1¥** are all jointly zero.
Zero Restriction Test
Hy : Rank(IT***) > g.i.e., not identified; H 4 : Rank(II***) = g, i.e.,
identified.

. N -T/2
The likelihood ratio statistic is A, = (1 + f) , and the asymp-

totic distributions of the statistic are: —7T - In(\.) =% x2(v) or
¢ % 2, F(v,T — K), where v = K** — g is the degree of over-
identification, and é is the smallest root of |W; - fWAA*| =0, and
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WAR = Y'MY, Wi=Y/MgY;, M=1-X(X'X)"'X'
M, =T—-X(X]X1)"' X}, My= DM — M.

The decision rule for this test statistic is: reject Hg if é is significantly
larger than 0.

15. A Recursive Two-Equation System

A recursive Two-Equation System without Exclusion Restrictions
(1) Basics

Let’s consider the following structural equations:
1 0y (P _ (B
Cad) (B = (3) X+ ().
The reduced-form equations are:

(5) = (21514',32) X + (ghl-‘ruz) :

Clearly, the first equation passes the order condition but the second equa-
tion fails the order condition. Yet this recursive system is identified. Why?
The rank and order condition is the necessary and sufficient condition for
a system to be identified when there is no restrictions on the disturbance
terms on the equations. Since we have some restrictions on the distur-
bance terms, the system is identified through the variance component.
How?
Yyy = < 0512 2 042031 7 ) = < Svivi Svary > .
Aoy, + 0y, Oy, SVl Va SV2V2

We get & = (Sv,v, —Sva1,)/Sv,vs, and then 31, B2 can be estimated from
the reduced form equations.
Measurement errors in system of equations

To see why measurement errors causes inconsistent estimates, consider
the following model y = #’x +u and X = x+e. u and e are independent

and we observe x with measurement error. That is, we don’t observe x
directly but x. Let Y = (y’ X’)’, then we have

Yyy = < DO Yar + 2ee - Siy Szz )

A S- ) . .
Clearly Bors = S = % is not consistent.

While we can use instrumental variables approach to tackle the mea-
surement error problem, we can also use the approach of multiple mea-
sures. For example, suppose we have x; = x + e; and Xy = x + ey, where
u, e; and es are mutually independent. Let Y = (y’ x1’ x3’)’, then we
have

B/meﬁ + Euu ﬁlzzm ﬁlzmm
z:YY = waﬁ 2a:a: + Eelel Za::v
wa/B Zzz sz + Eegeg

Clearly ( is overly identified by one and everything else is exactly iden-
tified. If we allow e; and es having the same variance, then .. is also
overly identified by one.
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Suppose that the structural equations are BY + I'X = ¢ where X is
measured with error, i.e., we observe X = X + 4. The reduced form is
Y = -BII'X +Ble. Let W= (Y’ X')/, then we have

> [ —-B7N)Exx(BTI) +B'E.BY —(B7NXxx
WW =\ —Sxx(B-ITY Yxx + Xss

_ ( Syy Syx )
Sxy Sxx /-
Hence we have Sy ¢ = —B7!'I'(Sg ¢ — s5), or BSy ¢ = —I'(Sg ¢ —
Yss), which can also be derived by post-multiplying BY = —I(X+0)+e¢

by X and then taking the expectation of both sides.






CHAPTER 13

Models with Discrete Dependent Variables

1. Truncated Model

*

Suppose that y ~ N(u,0?) and all our observations are y > y*.
called the point of truncation, and the density of y is

Then y* is

o1, (Y 1
faly =) = 30 (0) g

where ¢ and ® are p.d.f. and c.d.f. of standard normal, respectively.

2. Censored Model

Among the sample of size n, we have a sub-sample of size ni, the information
obtained of which is simply y < y*, and we have exact values known for the rest of
the sample. The joint density of the sample is

n—mni

() [z TT" 2 p(ese).

3. Classification of Discrete Dependent Variables

It may be the case that some dependent variables, such as the number of
patents granted to a company in a year, assume discrete values, but those discrete
values are not categorical. Here we are mainly concerned with categorical values. In
particular, the categorical values can be further classified as “ordered,” “sequential,”
or “non-ordered non-sequential.”

4. Probit/Logit Model for a Binary Case

Assume that Y = X,/ +u; and we observe that ¥;; =1if Y, > 0and Y;; =0
otherwise. Clearly we have

Pr(Yiy =1) =Pr(uy > —XuB) =1 — F(—Xuf),

where F'(+) is the c.d.f. for u;;. The sample likelihood is then

L= H F(_Xitﬁ) H [1 - F(_Xitﬂ)]‘

Yit=0 Yie=1

7
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If the c.d.f. of u; is assumed to be logistic, we have the logit model. In this
case, we have

Pr (Yiy = 0) = F(=Xuf) = T80 = mrapixosy
Pr (Y =1) = 1 - F(—XuB) = rromioseyy = ToXed)
Ty = prvise) = ¢, and

In [711,3;(:/(%?21)} = Xup.

If the c.d.f. of u is assumed to be N(0,0?), we have the probit model. In this
case,

KB —XitB/o . R
F(—=412) = [m \/_Q_WGXP(_“TMU'
It can be easily seen from the equation above and the sample likelihood function
that we can estimate only g, not § and o separately. Hence we might as well
assume o = 1 to start with. In particular, we have
Pr(Yy =0) = ©(—XuB) = 1 — 2(Xuf),
Pr(Yi;=1)=1—-®(—X;:8) = (Xi1/9).

The marginal effects for logit and probit models can be found as the following:

aP, _  exp(Xif) Py, _ ]
895,1{; = [1+exp(Xit,3)]2Bk’ and 81712 - ¢(thﬂ)ﬁkv

where ]5” is the predicated probability for Y;; = 1.

Because the c.d.f. of normal and logistic distributions are very close to each
other except at tails, we are not likely to get very different results from using two
models (note that only the marginal effects are directly comparable though), unless
the samples are large so that we have enough observations at the tails.

5. Ordered Probit/Logit Model

Assume that Y = X;8 + u; and u;; ~ N(0,1). The K — 1 thresholds are
denoted as 7, ...,7k_1. Clearly we have 19 = —oc0 and 7 = +00. We normalize
71 = 0 for convenience. What we are observing is Y;; = k with probability F(rx —
Xuf) — F(rg—1 — Xitf8), Vk. Equivalently, we have Pr(Y;; < k) = F(1 — Xit).

6. Sequential Probit

Assume that Y7, = XineBr + uire and we observe Yj,, = k with probability

Pr{Y;j; > 0,Vj € [1,k — 1], and Y3, < 0},Vk € [2, K — 1], and
Pr(Yiy = 1) = Pr(Yj, <0),
Pr(Y;; = K) =Pr{Y¥;;, > 0,Vk € [1, K — 1]}.
Note that we are allowing different underlying schemes for different categories.
For the case of no correlation across categories, we have u;i; ~ ii.d. N(0,1). If
K =4, then we have
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Pr (Vi = 1) = ®(—=X;1:81)

Pr (Vs = 2) = ®(X;1¢81)P(—Xi2:82)

Pr(Yi = 3) = ®(Xi1¢61) @( Xyt 2) P(—Xiz¢ 53)
Pr(Yy=4)= (I)(Xiltﬁl)cb(XiQtﬁ2)q)(XiBtBS)~

For the case allowing correlation across categories, we have u; ~ N(0,R),
where R is both the covariance and correlation matrix of u;;. If K = 4, then we
have

Pr(Yi=1)=d(—X;1:51)

Pr (Y = 2) = ®(Xi1:61, —Xiaefa| — p12)

Pr(Yy = 3) = ®(Xi1¢f1, Xiotf2, —Xizi B3] p12, —p13, —p23)
Pr (Y = 4) = ®( X181, Xiat 2, Xizt f3]p12, P13, p23)-

Note that whenever we change —X;8x into X;r:8x, we have to reverse the
sign of pgm,Vm € [1, K — 1]. Note further that the sample fraction of ¥;; = 1 gives
us one moment, and we can estimate 8, accordingly. Although the sample fraction
of Y;; = 2 gives us one additional moment, we have two more parameters, 85 and
P12, to estimate, a mission impossible. In the case where K = 4, we have merely
three moments yet we have six parameters to be estimated. We inevitably run into
an unidentified system.

7. Unordered Non-Sequential Model

Unordered Non-Sequential Model with Mutually Exclusive and Exhaustive Cat-
egories

(1) Basics
Denote as P, the probability associated with the k" category, k =
1,2,..., K. Then the idea is to express these probabilities in binary form.

Let
Py
Tk P(XiBe) k=1, K — 1,
Pt Pr (XiBr)
then
Py, F(X;B)
Zho o WO aoxgy),
P T T X5 — C K
Since Y r ! F = 10 = L — 1, we have
1
P, = - .
L+ 3000 Pu/Prc
Therefore,

_ G(X;0r)
1+ 38 G(XiBm)

Vek=1,.,K —1.
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13. MODELS WITH DISCRETE DEPENDENT VARIABLES

Multinomial logit

Assume that U}, = XiBr + wik, k = 1, ..., K and uy, is distributed
as logistic. Note that we cannot allow correlation across categories when
using logit model. Since the sum of the probabilities for any K — 1 cat-
egories will uniquely determine the probability for the only category left,
i.e., we have only K — 1 equations for K [(i’s, we need some sort of
normalization for S.

If we choose S = 0 then

X CXp( zkﬁk) — _
Pir = prertitfd—— k=1, K — 1.
If we choose Y1, B = 0, then
Py = <20 g = K.

k= ZK 1exP(szﬁm)

(Find out how to derive the probabilities above from the double-
exponential distribution.)
Multinomial probit

Assume that U}, = X;p Bk +uik, k =1, ..., K whereu; ~ N(0,R), Ris
both the covariance and correlation matrix for u;. We have the following
probabilities:

Py = Pr{Ug,, < U}, Vm # k}
= Pr{uzm uzk ( zmﬁm - Xlkﬁk)) Ym 7é k}
=Pk 1[—(Xi1B1 — XitBr), .., —(Xix Bx — XinBk)|ARA],

where
Ik—1 —ig—1 Ok
A= . .
{ Ok—r —ix-r Ik—&k
Let’s consider the case where K = 3 for a closely related model, U}, =
XiBr +uir,k=1,..., K. Let’s use U} as the base case. Then we have

Pr(U}, < Uj) = Pr [uu wis Xi(ﬁl*ﬁs)} 7

01—03 01—03

Pr(U7,

72

< 23) Pr |:ui2_u113 < _&(52—53)} )

02—03 02—03

What we can estimated is 2“—2“—37 %2“—3 and Py, —us,
Bi,ok, (k = 1,2,3), and p1a, p13, p23 to estimate in the original model.
Although we couldn’t estimate the full model, we do capture the most
interesting features of the model from the three parameters we can esti-
mate.
Panel/replicated data probit model

Assume Y} = X8+ €; + dit,t = 1,...,T;, where e; ~ N(0,02) and
d;z ~ N(0,1). We observe Y;; = 0if YV; < O and YV;; = 1if Y} > 0. Let’s
define an indicator variable for the sign, S;; = 1 — 2Y;;. Clearly we have
Sie =11 Y} <0and S;; = —1if Y;; > 0. Then the sample likelihood is

E Si1Xi1B —=Si2Xi28 7«T XIT B|
BV Ry =Ry v

where Ry, = S;S,/® (02ii’ +1r,). @ denotes element-by-element product.

wiz—ug3, yet we have




7. UNORDERED NON-SEQUENTIAL MODEL

The likelihood for the individual 7 is

,Ci:/oiﬂ(%)HTi O[=S5i (Xit + €i)]de;.

t=1
€
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