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Part 1

Statistical Theory





CHAPTER 1

Probability and Distributions

1. Conditional Probability and Bayes Rule

(1) Pr(A |B ) = Pr(A∩B)
Pr(B) , wherePr(B) > 0.

(2) Pr(A ∩B) = Pr(A |B ) Pr(B) = Pr(B |A) Pr(A).
(3) Pr(∪iAi |B ) = ΣP (Ai|B), if ∩Ai = ∅.
(4) Pr(B|B) = 1.
(5) Pr(A |B ∩ C ) = Pr(A∩B∩C)

Pr(B∩C) .

(6) Pr(A∩B∩C) = Pr(A |B ∩ C ) Pr(B∩C) = Pr(A |B ∩ C ) Pr(B |C ) Pr(C).
(7) Pr(∩ki=1Ai) = Pr(Ak |A1 ∩A2 ∩ · · · ∩Ak−1 )

·Pr(Ak−1 |A1 ∩A2 ∩ · · · ∩Ak−2 ) · · · Pr(A2 |A1 ) Pr(A1).
(8) If A1, ..., Ak are nested events, i.e., Ak ⊆ Ak−1 ⊆ Ak−1 ··· ⊆ A2 ⊆ A1, then

Pr(∩ki=1Ai) = Pr(Ak) = Pr(AkAk−1) Pr(Ak−1 |Ak−2 ) · · · Pr(A2 |A1 ) Pr(A1).
(9) Let ∩iAi = ∅ and B ⊆ Ai, then we have

Pr(Ai |B ) = Pr(B |Ai) Pr(Ai)

Pr(B)
=

Pr(B |Ai) Pr(Ai)

Σj Pr(B |Aj ) Pr(Aj)
.

2. Independence

Events A and B are independent if Pr(A |B ) = Pr(A), or Pr(B |A ) = Pr(B).
In this case, Pr(A ∩ B) = Pr(A) Pr(B) holds. Events A1, ..., Ak are mutually
independent if Pr(Aj

¯̄∩i∈IjAi ) = Pr(Aj), where Ij is any subset of Ai excluding
Aj . In the case of mutual independence, Pr(A ∩B) = 0.

3. R.V., P.D.F. and C.D.F.

A random variable X is a function X : C → B ⊆ R. A realization x of the
random variable X is a particular value of the random variable associated with a
particular outcome of the experiment. Pr(X = x) is an induced probability.

Suppose that the set of events B is countable, then X is a discrete random
variable. Suppose that we can find a function such that

(1) f(x) > 0,∀x ∈ B;
(2)

P
x∈B f(x) = 1; and

(3) Pr(Bi) =
P

x∈Bi f(x),

then f(x) is the probability density function (p.d.f.) associated with the random
variable X.

Suppose that the set of events B is uncountable, then X is a continuous random
variable. If a function f(x) satisfies the following,

(1) f(x) > 0,∀x ∈ B;
(2)

R
B
f(x)dx = 1; and

3



4 1. PROBABILITY AND DISTRIBUTIONS

(3) Pr(Bi) =
R
Bi

f(x)dx,
then f(x) is the probability density function (p.d.f.) associated with

X.
In the case of multivariate random variables, we have X : C → B ⊆ Rn, with

X containing components X1, ...,Xn. The respective p.d.f. f(x) has to satisfy the
following,

(1) f(x1, ..., xn) > 0;
(2)

R
B
f(x1, ...,n )dx1 · · · dxn = 1; and

(3) Pr(Bi) =
R
Bi

f(x1, ..., xn)dx1 · · · dxn.
F (x) ≡ Pr(X 6 x) is the cumulative distribution function (c.d.f.) of the

random variable X if the following conditions hold:
(1) 0 6 F (x) 6 1;
(2) F (x) is non-decreasing in x;
(3) Pr(a < X 6 b) = F (b)− F (a); and
(4) F (x) is right-continuous.

(The definition for right-continuity: ∀ε > 0,∃δ > 0, Ä |F (x)− F (c)| <
ε for c 6 x 6 c+ δ.)

For discrete random variable X, F (x) =
Px

k=−∞ f(k). For multivariate ran-
dom variables X1, ...,Xn, F (x1, ..., xn) = Pr(X1 6 x1, ...,Xn 6 xn).

4. Distribution of a Function of Random Variable(s)

Given a one-to-one increasing function u(·) and Y = U(X), with given c.d.f.
for X, F (x) = Pr(X 6 x). The c.d.f. for Y can be found as follows,

G(y) = Pr(Y 6 y) = Pr(u(X) 6 y) = Pr(X 6 u−1(y)) = F [u−1(y)].

Therefore, the p.d.f. of Y is obtained as g(y) = G0(y) = f [u−1(y)]du
−1(y)
dy .

If the function u(·) is one-to-one decreasing, then the c.d.f. for Y can be found
as follows,

G(y) = Pr(Y 6 y) = Pr(u(X) 6 y) = Pr(X > u−1(y))

= 1− Pr(X < u−1(y)) = 1− F [u−1(y)].

Finally, the p.d.f. of Y can be found as g(y) = −f [u−1(y)]du−1(y)dy .

If we combine the two scenarios above, we know the p.d.f. of a functional
transformation Y = u(X) is generally

g(y) = f [u−1(y)]
¯̄̄̄
du−1(y)

dy

¯̄̄̄
.

5. Moments, M.G.F. and C.G.F.

The first moment of a random variable X is its expectation E(X) =
R
xf(x)dx.

The second moment of a random variable X is E(X2) =
R
x2f(x)dx. The variance

of a random variable is the centralized second moments, i.e., var(X) = E[X −
E(X)]2 = E(X2) − [E(X)]2 = R

[x−E(X)]2f(x)dx. The kth raw moment, as
opposed to centralized moments, is given by E(Xk) =

R
xkf(x)dx.

For any random variable X, the moment generating function (m.g.f.) MX(s)
is defined to be MX(s) ≡ E[exp(sX)], and the characteristic generating function
(c.g.f.) CX(s) is defined to be CX(s) = E[exp(isX)], where i is the imaginary unit.
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Note that not all random variables have a respective moment generating function
but all of them do have a respective characteristic generating function. We focus
on the moment generating function here.

Why would we bother with m.g.f.? Let’s look at some very desirable properties
as follows.

MX(s) =

Z
esxf(x)dx

dMX(s)

ds
=

Z
x · esxf(x)dx; dMX(s)

ds
|s=0 =

Z
xf(x)dx = E(X).

d2MX(s)

ds2
=

Z
x2 · esxf(x)dx; d

2MX(s)

ds2
|s=0 =

Z
x2f(x)dx = E(X2).

dnMX(s)

dsn
=

Z
xn · esxf(x)dx; d

nMX(s)

dsn
|s=0 =

Z
xnf(x)dx = E(Xn).

The name of m.g.f. arises from the fact that dnMX(s)
dsn |s=0 delivers the nth raw

moment forX. It’s very important to note that there is a one-to-one correspondence
between m.g.f. and the distribution function of the random variable. As long as we
can identify the m.g.f. for a random variable (or a function of random variable),
the distribution function is uniquely pinned down.

6. Multivariate M.G.F. and Independence

Two random variablesX and Y are said to be independent if f(x, y) = fX(x)fY (y)
and there is no confounding ranges between X and Y (i.e., the domain of X is in-
dependent with the domain of Y ). Despite that the independence of X and Y
implies f(x|y) = fX(x) and f(y|x) = fY (y), f(x|y) = fX(x) doesn’t necessar-
ily imply the independence of X and Y . The joint m.g.f. for a bivariate case
can be defined as MX,Y (s, t) = E[exp(sX + tY )], and for the multivariate case
MX1,...,Xn(s1, ..., sn) = E[exp(s1X1 + · · ·+ snXn)].

It can be shown easily that

∂2MX,Y (s, t)

∂s2
|s=0,t=0 = E(X2);

∂2MX,Y (s, t)

∂t2
|s=0,t=0 = E(Y 2);

∂2MX,Y (s, t)

∂s∂t
|s=0,t=0 = E(XY ).

Note the following properties around independence.

(1) X1, ...,Xn are mutually independent iff f(x1, ..., xn) = g1(x1) · · · gn(xn)
plus no confounding ranges.

(2) If X1, ...,Xn are mutually independent, then Pr(x1 ∈ A1, ..., xn ∈ An) =
Pr(x1 ∈ A1) · · · Pr(xn ∈ An).

(3) IfX1, ...,Xn are mutually independent, thenE[u1(X1)u2(X2)···un(Xn)] =
E[u1(X1)] ·E[u2(X2)] · · ·E[un(Xn)].

(4) The mutual independence ofX1, ...,Xn is equivalent toMX1,...Xn(s1, ..., sn) =
MX1(s1)MX2(s2) · · ·MXn(sn).
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7. Weak Law of Large Numbers

The weak law of large numbers indicates that the sample mean of any random
variable converges to its true population mean in probability. In math notations,
it says lim

n→∞Pr
£¯̄
Xn

n − µ
¯̄
> ε

¤
= 0,∀ε > 0.

To prove the weak law of large numbers, we need something known as Cheby-
shev’s Inequality, which is just a special case of Markov’s Inequality. Covered below
are both theorems.

Markov’s Inequality says that for u(X) > 0, Pr[u(X) > c] 6 E[u(X)]
c holds.

Why is it so? Let A ≡ {x : u(X) > c}, then E[u(X)] =
R
u(x)f(x)dx >R

A
u(x)f(x)dx >

R
A
cf(x)dx = cPr(u(X) > c) obviates the aforementioned in-

equality.
Chebyshev’s Inequality says the following. If X is a random variable with finite

mean E(x) = µ and finite variance var(X) = σ2 <∞, then Pr(|X − µ| > kσ) 6 1
k2

holds. Why is it so? Note first that E[(X − µ)2] = σ2 and Pr(|X − µ| > kσ) =
Pr[(X − µ)2 > k2σ2]. Using Markov’s Inequality, we have Pr[(X − µ)2 > k2σ2] 6
E(X−µ)2
k2σ2 = 1

k2 . Hence Chebyshev’s Inequality follows.
To prove the weak law of large numbers, note that

Pr

·¯̄̄̄
Xn

n
− µ

¯̄̄̄
> ε

¸
= Pr (|Xn − nµ| > nε) = Pr

h
|Xn − nµ| >

³nε
σ

´
σ
i
6 σ2

n2ε2
,

and thus lim
n→∞Pr

£¯̄
Xn

n − µ
¯̄
> ε

¤
= 0.

8. List of Common Distributions

(1) Bernoulli: one experiment, two possible outcomes.
f(x) = px(1− p)1−x, x(success) = 1, x(failure) = 0.

(2) Binomial: exactly x successes out of n trials of Bernoulli experiments.
f(x) =

¡
n
x

¢
px(1− p)n−x, µ = np, σ2 = np(1− p),

M(t) = (1− p+ pet)n.
(3) Negative Binomial: exactly x failures before the kth success.

f(x) =
¡
x+k−1
k−1

¢
pk(1− p)x.

(4) Geometric: exactly x failures before the first success.
f(x) = p(1− p)x, µ = 1−p

p , σ2 = 1−p
p2 , M(t) = pes

1−es(1−p) .
(5) Hyper-geometric: N balls with R red ones, drawing exactly x red out of

n draws without replacement.
f(x) =

¡
R
x

¢¡
N−R
n−x

¢
/
¡
N
n

¢
.

(6) Pareto:
f(x, θ) = θ · xθ0 · x−(θ+1), where x > x0, µ =

x0θ
θ−1 .

(7) Trinomial: one experiment, three possible outcomes, repeat n times.
f(x, y) = n!

x!y!(n−x−y)!p
x
1p

y
2p

n−x−y
3 , where p1 + p2 + p3 = 1.

M(t1, t2) = (p1e
t1 + p2e

t2 + p3)
n.

(8) Multinomial:
f(x1, ..., xn) =

n!
x1!x2!···xk!p

x1
1 px22 · · · pxkk , where Σpk = 1 and Σxk = n.

M(t1, ..., tn) = (p1e
t1 + · · ·+ pk−1etk−1 + pk)

n.
(9) Poisson: (special case of Binomial distribution, n→∞, p→ 0, np = λ)

f(x, λ) = e−λλx
x! , x = 0, 1, 2, .... µ = σ2 = λ.

M(t) = exp[λ(et − 1)].
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(10) Gamma:

f(x, α, β) = xα−1 exp(−x/β)
Γ(α)βα , where α > 0, α, β > 0.

µ = αβ, σ2 = αβ2, M(t) = (1− βt)−α, where t < 1
β .

(11) Chi-square: (special case of Gamma distribution, α = r
2 and β = 2)

f(x) = 1

Γ(
r
2 )
√
2
x
r
2−1e−

x
2 , M(t) = (1− 2t)− r

2 , where t < 1
2 .

(12) Exponential: (special case of Gamma distribution, α = 1 and β = 1
λ )

f(x) = λ exp(−λx), where x > 0, µ = 1
λ , σ

2 = 1
λ2 ,

M(t) = λ
λ−t , (t < λ).

(13) Normal:

f(x) = 1√
2πσ

exp
n
− 12

¡
x−µ
σ

¢2o
, M(t) = exp(µt+ 1

2σ
2t2).

9. Basic Rules on First Two Moments

(1) E(x) =
R
xfx(x)dx =

R
x

R
y
xf(x, y)dydx;

(2) E[g(x, y)] =
R
x

R
y
g(x, y)f(x, y)dydx;

(3) E(ax+ by + c) = aE(x) + bE(y) + c;
(4) V ar(ax+ by+ c) = a2V ar(x)+ b2V ar(y)+2abCov(x, y) = V ar(ax+ by);
(5) Cov(ax+ by, cx+ dy) = acV ar(x) + bdV ar(y) + (ad+ bc)Cov(x, y)

(bi-linearity of covariance)

10. Bi-variate Normal Distribution

Random variables X and Y follow a bi-variate normal distribution with pa-
rameters µX , µY , σ2X , σ

2
Y , ρ, if

f(x, y) =
1

2π
[σ2Xσ

2
Y (1− ρ2)]−

1
2

exp

(
− 1

2(1− ρ2)

"µ
x− µX
σX

¶2
− 2ρ(x− µX)(y − µY )

σXσY
+

µ
y − µY
σY

¶2#)
,

where ρ2 < 1, −∞ < x <∞, −∞ < y <∞.
The above expression in matrix notation is much simpler.

z =

µ
x

y

¶
, µ =

µ
µX
µY

¶
,Σ =

µ
σ2X ρσXσY
ρσXσY σ2Y

¶
,

f(z) =
1

2π
|Σ|− 1

2 exp

·
−1
2
(z− µ)0Σ−1(z− µ)

¸
.

Here are some most important properties of bi-variate and multi-variate normal.

(1) the marginal density of a bi-variate (or multi-variate) normal distribu-
tion is still normally distributed. That is, X ∼ N(µX , σ

2
X) and Y ∼

N(µY , σ
2
Y ).

(2) the conditional density of a bi-variate (or multi-variate) normal distribu-
tion is still normally distributed. That is,

X |y ∼ N

·
µX + ρ

σX
σY
(y − µY ), σ

2
X(1− ρ2)

¸
,

Y |x ∼ N

·
µY + ρ

σY
σX
(x− µX), σ

2
Y (1− ρ2)

¸
.
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(3) The regression among jointly normally distributed variables is linear!
(4) The moment generating function is Mz(s) = exp

©
µ0s+ 1

2s
0Σs
ª
.

11. Conditioning in a Bi-variate Distribution

(1) The conditional mean E(y|x) is called the regression of y on x. A random
variable may always be written as y = E(y|x)+[y−E(y|x)] = E(y|x)+ε.

(2) Conditional variance: V ar(y|x) = E(y2|x)−[E(y|x)]2. If V ar(y|x) doesn’t
change with x, it is called homoskedasticity, i.e., V ar(ε|x) = σ2.

(3) Law of iterative expectations:
E(y) = Ex[E(y|x)];
Cov(x, y) = Cov[x,E(y|x)] = R

x
[x−E(x)]E(y|x)fx(x)dx.

(a) To prove the first result, start from
R
y
yf(x, y)dy = E(y|x)fx(x),

then E(y) =
R
x

R
y
yf(x, y)dydx =

R
x
E(y|x)fx(x)dx = Ex[E(y|x)].

(b) For the second result, start from
R
y
yf(x, y)dy =

R
y
E(y|x)f(x, y)dy

and E(y) = Ex[E(y|x)], then Cov(x, y) =
R
x

R
y
[x−E(x)][y −E(y)]

f(x, y)dydx =
R
x

R
y
[x−E(x)]{E(y|x)−Ex[E(y|x)]}f(x, y)dydx

= Cov[x,E(y|x)].
(4) Variance decomposition: V ar(y) = V arx[E(y|x)] +Ex[V ar(y|x)].

The variance of y can be decomposed as the variance of the conditional
mean and the expected variance of y around the conditional mean. The
first term on the RHS is the regression variance, similar to SSR, and the
second term on the RHS is the residual variance, similar to SSE.

Note that
R
y
yf(x, y)dy =

R
y
yf(y|x)fx(x)dy =

hR
y
yf(y|x)dy

i
fx(x)

= E(y|x)fx(x) = E(y|x) R
y
f(x, y)dy =

R
y
E(y|x)f(x, y)dy.

(1) (a) To prove V ar(y) = V arx[E(y|x)] +Ex[V ar(y|x)], we have
[y −E(y)]2 = {[y −E(y|x)] + [E(y|x)−E(y)]}2

= [y −E(y|x)]2 + [E(y|x)−E(y)]2

+ 2[y −E(y|x)][E(y|x)−E(y)].

Therefore, we have

V ar(y) = ExV ar(y|x) + V arx[E(y|x)]
+ 2{Ex[E(y|x)]2 −Ex[E(y|x)]2 − [E(y)]2 + [E(y)]2}
= ExV ar(y|x) + V arx[E(y|x)].

(2) If E(y|x) = α+ βx, then Cov(x, y) = Cov[x,E(y|x)] = Cov(x, α+ βx) =
βV ar(x), so β = Cov(x, y)/V ar(x) and V arx[E(y|x)] = β2V ar(x) =
ρ2xyV ar(y).

(3) Ex[V ar(y|x)] = V ar(y)− V arx[E(y|x)]
On average, conditioning reduces the variance of the variable subject

to the conditioning.
(4) If E(y|x) = α + βx and V ar(y|x) is a constant, then V ar(y|x) = σ2y(1−

ρ2xy).
(5) The coefficient of determination (COD) is equal to the ratio of regression

variance to the total variance. If E(y|x) = α+βx, then COD(= R2) = ρ2.
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12. Multivariate Distribution

(1) E(x) = µ, V ar(x) = E[(x−µ)(x−µ)0] = Σ (variance-covariance matrix)
By dividing σij by σiσj , we obtain the correlation matrix R.

(2) E(Ax) = AE(x) = Aµ; V ar(Ax) = AΣA0

Particularly, if (n−K)S
2

σ2 ∼ χ2(n−K), then E[(n−K)S
2

σ2 ] = n−K,

from E[χ2(λ)] = λ, implies E(S2) = σ2; and V ar[(n−K)S2σ2 ] = 2(n−K),
from V ar[χ2(λ)] = 2λ, implies V ar(S2) = 2σ4

n−K .

13. Multivariate Normal Distribution

(1) If x ∼ N(µ,Σ), then Ax+ b ∼ N(Aµ+ b,AΣA0).
(2) Quadratic forms in a standard normal vector.

(a) If x ∼ N(0, I), C is square, and C0C = I(i.e., C is an orthogonal
matrix), then C0x ∼ N(0, I).

(b) If x ∼ N(0, I) and A is idempotent, then x0Ax ∼ χ2(J), where J is
the rank of A.

(c) Σ(xi − x̄)2 = x0M0
x, and rank(M0) = tr(M0) = n(1− 1

n) = n− 1,
thus Σ(xi − x̄)2 ∼ χ2(n− 1).

(d) nx̄2 = x0(jj0)x, where j = 1√
n
i. It could be verified that jj0 is idem-

potent with rank of 1, so nx̄2 ∼ χ2(1).
(e) Σx2i = Σ(xi − x̄)2 + nx̄2 ⇔ x0x = x0M0

x+ x0(I−M0)x⇔ χ2(n) =
χ2(n− 1) + χ2(1).

(f) If x ∼ N(0, I), A and B are idempotent, then x0Ax and x0Bx are
independent if AB = 0.
Let x1 = Ax and x2 = Bx, then x0Ax = x10x1 and x0Bx = x20x2.
Since Cov(x1,x2) = E[(Ax)(Bx)0]− 0 = AV ar(x)B0 = AB, AB =
0 would imply the independence of the two quadratic forms.

(g) To prove that Σ(xi−x̄)2 and nx̄2 are independent, it suffices to prove
M0(I−M0) = 0, which is apparently true.

(3) F distribution
If x ∼ N(0, I), A and B are idempotent with rank rA and rB , then

AB = 0 implies that

x0Ax/rA
x0Bx/rB

∼ F (rA, rB).

Extension to x ∼ N(0, σ2I):

x0Ax/(σ2rA)
x0Bx/(σ2rB)

∼ F (rA, rB).

(4) Full rank quadratic form

If x ∼ N(µ,Σ), then Σ−
1
2 (x−µ) ∼ N(0, I) and (x−µ)0Σ−1(x−µ) ∼

χ2(N).
(5) If x ∼ N(0, I) and A is idempotent, then Lx and x0Ax are independent

if LA = 0.
(6)

t(J) =
N(0, 1)

[χ2(J)/J ]
1
2

.
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(7)
√
nx̄ ∼ N(0, 1) and Σ(xi − x̄)2 ∼ χ2(n− 1) implies that√

nx̄

[Σ(xi − x̄)2/(n− 1)]12
∼ t(n− 1),

i.e.,
√
nx̄/S ∼ t(n− 1).



CHAPTER 2

Distribution of Functions of Random Variables

1. Basic Definitions

That X1, ..., Xn is a random sample of size n is equivalent to the statement
that X1, ..., Xn are independently identically distributed (i.i.d.) random variables.

A statistic is a function of one or more random variables that doesn’t depend
upon any unknown parameters. Note that a statistic is a random variable and that
the p.d.f. of a statistic may involve unknown parameters.

If the addition of two random variables with the same distribution has the
same distribution as the original ones, then we say this distribution has reproduc-
tive property. For example, Gamma, Poisson and Chi-square distributions are all
reproductive.

2. General Approaches

Given that X1, ..., Xn is a random sample from p.d.f. f(x). Let Y =
u(X1, ...,Xn). How can we find out the p.d.f. g(y)? There are two basic tech-
niques.

(1) Direct approach
(Find a good enough one-to-one transformation, calculate the Jacobian
of the inverse transformation, find the joint density and finally get the
marginal density. Note that in the last step we have to pay extra care to
the range of variables.)

(2) m.g.f. approach
(Try to use the m.g.f. corresponding to f(x) to figure out the m.g.f. for
Y . Identify the distribution of Y by identify its m.g.f. This approach is
typically simpler than the direct approach.)

3. Direct Approach

Given that X1, ..., Xn is a random sample from p.d.f. f(x1, ..., xn; θ). Let
Y1 = ui(X1, ...,Xn). How can we find out the p.d.f. g(y1; θ)? Here are the steps
for the direct approach.

(1) Construct a good enough one-to-one transformation system between Yi
and Xi, i.e., Yi = ui(X1, ...,Xn) and Xi = wi(Y1, ..., Yn), where i =
1, ..., n. Note that the “goodness” of the transformation depends on the
construction of Yi = ui(X1, ...,Xn) for i 6= 1.

(2) Calculate the Jacobian J =
¯̄̄
∂wi
∂Yi

¯̄̄
.

(3) Find the joint density g(y1, ..., yn) = abs(|J |)f [w1(·), ..., wn(·)].
(4) Find the marginal density g(y1).

11
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Here are some examples for exercise.
Example 1. X1, ..., Xn is a random sample from f(x1, ..., xn; θ) = θxθ−1,

0 6 x 6 1, θ > 1. Let Y1 = X1X2 · · ·Xn. Find g(y1).
Example 2. X1 ∼ f(x1) and X2 ∼ f(x2) are independent, and Y = X1 +X2.

Find g(y).

4. M.G.F. Approach

Given that X1, ..., Xn is a random sample from p.d.f. f(x). Let Y =
u(X1, ...,Xn). How can we find out the p.d.f. g(y)? Basically we are trying to
use the m.g.f. corresponding to X to figure out the m.g.f. for Y . Finally we
can identify the distribution of Y by identify its m.g.f. This approach is typically
simpler than the direct approach.

Example 1. X ∼ N(0, 1), prove that X2 ∼ χ2(1).
Proof: Denote Y ≡ X2. Let’s find out the m.g.f. for Y as follows.

MY (t) = E[exp(tX2)]

=

Z +∞

−∞
exp(tx2) · 1√

2π
exp

µ
−1
2
x2
¶
dx

=

Z +∞

−∞

1√
2π
exp

µ
−1
2
(1− 2t)x2

¶
dx

=
1√
1− 2t

Z +∞

−∞

1√
2π
exp

µ
−1
2
(
√
1− 2tx)2

¶
d
√
1− 2tx

=
1√
1− 2t

= (1− 2t)− 1
2 .

Clearly MY (t) is the m.g.f. of Chi-square distribution with r = 1, i.e., X2 ∼ χ2(1).
Example 2. X1, ..., Xn is a random sample from N(0, 1), prove that ΣiX2

i ∼
χ2(T ).

Proof: We know from Example 1 that X2
i ∼ χ2(1) and MX2(s) = (1− 2s)− 1

2 .
Denote Y ≡ ΣiX2

i and let’s find the m.g.f. for Y .

MY (s) = E[exp(sY )]

= E[exp(sX2
1 ) exp(sX

2
2 ) · · · exp(sX2

n)]

= E[exp(sX2
1 )]E[exp(sX

2
2 )] · · ·E[exp(sX2

n)]

=MX2
1
(s)MX2

2
(s) · · ·MX2

n
(s)

= (1− 2s)− 1
2n.

ClearlyMY (s) is the m.g.f. of Chi-square distribution with r = n, i.e., ΣiX2
i ∼

χ2(T ).
Example 3. X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2) are independent. Prove that

X1 −X2 ∼ N(µ1 − µ2, σ
1
1 + σ22 − 2σ12).

Example 4. X1, ...,Xn is a random sample from N(µ, σ2). Prove that ΣiXi ∼
N(nµ, nσ2).

Example 5. X1, ...,Xn is a random sample from N(µ, σ2). Prove that X ∼
N(µ, 1nσ

2).
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Example 6. X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) are independent, prove
that X1 +X2 ∼ Poisson(λ1 + λ2).

5. Order Statistics

X1, ..., Xn is a random sample from f(x), and Y1, ..., Yn are the tth order
statistics, i.e., y1 < y2 < · · · < yn. The joint density and marginal density of the
order statistics are given by:

(1) g(y1, ..., yn) = n!f(y1)f(y2) · · · f(yn),−∞ < y1 < y2 < · · · < yn < +∞;
(2) gi(yi) =

n!
(n−i)!(i−1)! [F (yi)]

i−1[1− F (yi)]
n−if(yi).

That Yi is the ith order statistic requires two things, the ith position is reserved
for Yi and yi is ranked as the ith item. Here is an intuitive account for the marginal
density of the ith order statistic in terms of permutation.

Consider a line of n slots. First, populate the first (i−1) slots and the probabil-
ity is

¡
n
i−1
¢
= n!

(i−1)!(n−i+1)! . Next, pick one lucky item out of the remaining (n−i+1)
items and put it on the ith slot. The probability for this step is

¡
n−i+1
1

¢
= n− i+1.

The two steps above complete the process of securing the ith slot in the line of n
slots, delivering a probability of

¡
n
i−1
¢¡

n−i+1
1

¢
= n!

(n−i)!(i−1)! .
Note that merely securing the ith slot is not enough to get the ith order statistic,

and we have to make sure that the rank is in line with the position. That is, all
previous (i− 1) items are indeed smaller than yi, with probability Pr(Yj 6 yi, 1 6
j 6 i− 1) = [F (yi)]i−1, and the future (n− i) items are indeed larger than yi, with
probability Pr(Yk > yi, i+ 1 6 k 6 n) = [1− F (yi)]

n−i.
Combining these two components, the marginal density of the ith order statis-

tics can be written as gi(yi) = n!
(n−i)!(i−1)! [F (yi)]

i−1[1− F (yi)]
n−if(yi).

6. Student-t, F and Sampling Distribution

(1) If X1 ∼ N(0, 1) and X2 ∼ χ2(r) are independent, then X1√
X2/r

follows a

student-t distribution with r degrees of freedom, i.e., X1√
X2/r

∼ t(r).

(2) If X1 ∼ χ2(r) and X2 ∼ χ2(s) are independent, then X1/r
X2/s

∼ F (r, s).

(3) If X1, ..., Xn is a random sample from N(µ, σ2) and X = 1
nΣiXi and

S2 = 1
nΣi(Xi −X)2, then we have

(a) X ∼ N
³
µ, σ

2

n

´
, which implies that

√
n(X−µ)

σ ∼ N(0, 1).

(b) X and S2 are independent.

(c) nS2

σ2 ∼ χ2(n− 1), which implies that
√
n−1(X−µ)

S ∼ t(n− 1).





CHAPTER 3

Limiting Distributions

Note that in this chapter we use Xn as a short-hand for the random sample
X1, ...,Xn. We will explain the definitions of convergence in probability, conver-
gence in distribution, convergence in mean square, rules for probability limit, and
finally the central limit theorem.

1. Convergence

(1) Convergence in Distribution
A random sample Xn (with c.d.f. Fn(x)) converges in distribution to

a random variable X (with c.d.f. F (x)), if lim
n→∞ |Fn(x)− F (x)| = 0 for

every point x at which F (x) is continuous. It is denoted as Xn
d−→ X.

(2) Convergence in Probability
Xn converges in probability to a constant c iff Xn is getting ever closer

to c as n→∞. That is, p limXn = c⇔ lim
n→∞Pr(|Xn − c| > ε) = 0,∀ε > 0

or equivalently Xn
p−→ c⇔ lim

n→∞Pr(|Xn − c| < ε) = 1,∀ε > 0.
(3) Convergence in Mean Square

A random sample Xn has mean µn and variance σ2n. If lim
n→∞µn = c

and lim
n→∞σ2n = 0, then Xn converges in mean square to c. It’s denoted

by p limXn = c. This result can be easily proved using Chebyshev’s
Inequality, covered in an earlier chapter.

(4) Relationship between Three Forms of Convergences
If a random sample Xn converges in distribution to a degenerate dis-

tributionX that has probability 1 at point c, thenXn
p−→ c or p limXn = c.

If a random sample converges in mean square to c, then it also converges
in probability to c, but the converse need not be true.

2. Rules for Probability Limit

(1) Slutsky Theorem: For continuous function g(xn) that is not a function of
n, we have p lim[g(xn)] = g[p lim(xn)].

(2) p limxn = c and p lim yn = d imply the following: p lim(xn + yn) = c+ d;
p lim(xnyn) = cd; p lim(xnyn ) =

c
d , if d 6= 0.

(3) If Wn is a matrix whose elements are random variables, i.e., random
matrix and p limWn = Ω, then p limW−1

n = Ω−1.
(4) If Xn and Yn are random matrices, and p limXn = A, p limYn = B,

then p limXnYn = AB.

15
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3. Rules for Limiting Distributions

(1) If xn
d→x and p lim yn = c, then xnyn

d→ cx, xn+ yn
d→x+ c, and xn

yn

d→ x
c ,

(c 6= 0).
(2) If xn

d→x and g(xn) is a continuous function, then g(xn)
d→ g(x). Partic-

ularly, F (1, n) = t2(n)
d→χ2(1).

(3) If yn has a limiting distribution and p lim(xn − yn) = 0, then xn has the
same limiting distribution as yn.

4. Methods of Finding Limiting Distributions

Generally speaking, there are two ways to do it. One is to calculate the proba-
bility limits and the other is to calculate the limiting moment generating function.

Here are the steps for the plim approach:
(1) find Fn(x); (We may need the method of finding the distribution of func-

tions of random variables, covered in an earlier chapter.)
(2) calculate lim

n→∞Fn(x) and define F (x) ≡ lim
n→∞Fn(x);

(3) identify what distribution X has corresponding to F (x);

(4) conclude that Xn
d−→ X.

In particular, if X has any one of the following properties:

(a) f(x) =

½
1, if x = µ;
0, if x 6= µ;

(b) F (x) =

½
1, if x > µ;
0, if x < µ;

(c) MX(s) = exp(sµ),

then conclude that Xn
p−→ µ or Xn

d−→ X, where X is a degenerate
distribution that has probability of 1 at point x = µ.

Here are the steps for the limiting m.g.f. approach.

(1) find MXn(s);
(2) calculate lim

n→∞MXn(s) and define MX(s) ≡ lim
n→∞MXn(s);

(3) identify what distribution X has according to MX(s);

(4) conclude that Xn
d−→ X.

In particular, if MXn(s) =
£
MZ

¡
s
n

¢¤n
or MXn(s) =

h
MZ

³
s√
n

´in
,

take advantage of the following two tricks.
(a) Use Taylor expansion as follows,

MZ

¡
s
n

¢
=MZ(0) +

s
nM

0
Z(0) + o( 1n)

= 1 + s
nE(Z) + o( 1n);

MZ

³
s√
n

´
=MZ(0) +

s√
n
M 0

Z(0) +
s2

2nM
00
Z(0) + o( 1n)

= 1 + s√
n
E(Z) + s2

2nE(Z
2) + o( 1n);

(b) Use lim
n→∞

¡
1 + a

n

¢n
= ea, when computing lim

n→∞MXn(s).

5. Central Limit Theorems

(1) Univariate, same distribution, finite µ and σ2.
√
n(X̄n − µ)

d→N(0, σ2).
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(2) Univariate, different distribution, finite µi and σ2i . If limn→∞ σ̄2n = σ̄2, i.e.,

lim
n→∞V ar(

√
nX̄n) = σ̄2, then

√
n(X̄n − µ̄n)

d→N(0, σ̄2).

(3) Multivariate, same distribution, finite vector µ and finite positive definite

covariance matrix Q.
√
n(X̄n − µ)

d→N(0,Q).
(4) Multivariate, different distribution, finite vector µi and finite positive

definite covariance matrix Qi. If lim
n→∞V ar(Q̄n) = Q, then

√
n(X̄n −

µ̄n)
d→N(0,Q).

(5) Limiting normal distribution of a function. If
√
n(Zn − µ)

d→N(0, σ2),
and if g(zn) is a continuous function not involving n, then

√
n[g(Zn) −

g(µ)]
d→N{0, [g0(Zn)]2σ2}.

(6) Limiting normal distribution of a set of functions. If
√
n(Zn−µ) d→N(0,Σ)

and c(Zn) is a set of J continuous functions not involving n, then
√
n[c(Zn)−

c(µ)]
d→N(0,CΣC0), where C = ∂c(Zn)

∂Z0n
.

6. Asymptotic Distributions

(1) If
√
n(X̄n − µ)

d→N(0, σ2), then X̄n
a→N(µ, σ

2

n ).

(2) If
√
n(θ̂ − θ)

d→N(0,V), then θ̂
a→N(θ, Vn ). Asy.V ar(θ̂) =

V
n .

(3) If θ̂
a→N(θ, σ

2

n ) and g(θ) is a continuous function not involving n, then

g(θ̂)
a→N{g(θ), [g0(θ)]2σ2}.

(4) If θ̂
a→N(θ, Vn ) and c(θ) is a set of J continuous functions not involving

n, then
c(θ̂)

a→N [c(θ), CVC
0

n ],

where C = ∂c(θ)
∂θ0 .

7. Example of Limiting Distribution

A random sample Xn has mean µ and variance σ2 <∞. Prove that
√
n(X̄n − µ)

S
d−→ N(0, 1).

(1) By Central Limit Theorem, we have
√
n(X̄n−µ)

σ

d−→ N(0, 1);
(2) Prove p lim(S2) = σ2 as follows.

S2 = 1
nΣ(Xt − X̄)2 = 1

nΣX
2
t − X̄2

p lim( 1nΣX
2
t ) = p lim(X2

t ) = E(X2)

p lim[(X̄)2] = [p lim(X̄)]2 = [E(X)]2

p lim(S2) = p lim( 1nΣX
2
t )− p lim(X̄2)

= E(X2)− [E(X)]2
= σ2

Note that we have twice deployed the weak law of large number, which
says that p lim(Ȳn) = E(Y ) as long as the population distribution has
finite mean and variance. Refer to an ealier chapter for detailed coverage.
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(3) From p lim(S2) = σ2, we know p lim(S/σ) = 1 or S/σ
p−→ 1.

(4) Using results from steps (1) and (3), we have
√
n(X̄n − µ)

σ · Sσ
d−→ N(0, 1).



CHAPTER 4

Statistical Inference

1. Desirable Statistic Properties

(1) Unbiased estimator
In the case of single parameter θ, the estimator θ̂ is unbiased if E(θ̂) =

θ; in the case of vector θ, it requires equality of element by element.
(2) Efficient estimator

In the case of single parameter θ, θ̂1 is more efficient than θ̂2 if
V ar(θ̂1) < V ar(θ̂2). In the case of vector θ, θ̂1 is more efficient than
θ̂2 if V ar(θ̂2)− V ar(θ̂1) is a nonnegative definite matrix.

(3) Efficiency
If the case of single parameter, θ̂ is efficient if it achieves the CRLB,

[I(θ)]−1, where

I(θ) = −E(∂2 lnL∂θ2 ) = E(∂ lnL∂θ )2.

In the case of vector θ,

I(θ) = −E(∂2 lnL∂θ∂θ0 ) = E[(∂ lnL∂θ )(∂ lnL∂θ0 )].

(4) For normal distribution,
·
I

µ
µ
σ2

¶¸−1
=

"
σ2

n 0

0 2σ4

n

#
.

Let µ̂ and σ̂2 be unbiased estimators, and V ar(µ̂ σ2) = V, then
V− [I(µ̂ σ̂2)]−1 is a nonnegative definite matrix. Particularly, µ̂ = x̄ and
σ̂2 = s2 implies that

V ar(µ̂) = σ2

n ,

i.e., µ̂ achieves the CRLB, and that

V ar(σ̂2) = 2σ4

n−1 ,

i.e., σ̂2 doesn’t achieve the CRLB.
(5) Consistency

For the single parameter case, the estimator θ̂ is consistent if and
only if p lim θ̂ = θ; for the vector case, it requires the equality of element
by element. If xn has finite µ and σ2, then x̄ is a consistent estimator
for µ. For any function g(x), if E[g(x)] and V ar[g(x)] are finite, then
p lim 1

nΣg(x) = E[g(x)].

2. Sufficient Statistics

(1) Sufficient Statistics
X1, ...,Xn is a random sample from f(x; θ). Y = u(X1, ...,Xn) is

a sufficient statistic for θ if given any other statistic Z = v(X1, ...,Xn),

19
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the conditional density function doesn’t depend upon θ, i.e., g(y, z; θ) =
h(z|y) · g(y; θ) and h(z|y) doesn’t depend upon θ.

(2) Fisher-Neyman Theorem
X1, ...,Xn is a random sample from f(x; θ). Y = u(X1, ...,Xn) is a

sufficient statistic for θ iff f(x1, ..., xn; θ) = g(y; θ) · h(x1, ..., xn). Note
that h(·) doesn’t depend upon θ.

(3) Factorization Criterion
X1, ...,Xn is a random sample from f(x; θ). Y = u(X1, ...,Xn) is a

sufficient statistic for θ iff f(x1, ..., xn; θ) = k1(y; θ) · k2(x1, ..., xn), where
both k2(·) and the domain of k2(·) don’t depend upon θ.

Example 1 : X1, ...,Xn are i.i.d. Poisson(λ). So the joint density
function can be factorized as follows,

f(x1, ..., xn;λ) =
e−λnλΣxi

Πxi!
= (e−λnλΣxi) · 1

Πxi!
.

Hence, Σxi is a sufficient statistic for λ.
Example 2 : X1, ...,Xn are i.i.d. Bernoulli(p). So the joint density

function can be factorized as follows,

f(x1, ..., xn; p) = pΣxi(1− p)n−Σxi = [pΣxi(1− p)n−Σxi ] · 1.

Hence, Σxi is a sufficient statistic for p.
(4) Rao-Blackwell Theorem

Let Y be sufficient for θ, and W be any unbiased estimator for θ,
consider E(W |Y = y) = φ(y), then
(a) φ(y) is a statistic, i.e., there is no θ hidden in φ(y);
(b) φ(y) is unbiased for θ;
(c) var[φ(y)] < var(W );
(d) for many distribution (known as “complete” families), φ(y) is unique

and the minimum variance unbiased estimator (MVUE) for θ.
(5) Transformation of Sufficient Statistic

If Y is sufficient for θ, then any function of Y is also sufficient for θ
as long as the function itself doesn’t dependent upon θ.

If Y is sufficient for θ, and W = u(Y ), which is a one-on-one corre-
spondence, is unbiased for θ, then W is the minimum variance unbiased
estimator (MVUE) for θ. Intuitively speaking, an unbiased estimator W
that utilizes the minimum information Y necessary to describe θ has to
be the “leanest” among all unbiased estimators for θ.

(6) Technique for Finding MVUE using Rao-Blackwell Theorem
(a) prove that Y is sufficient for θ by using the factorization criterion;
(b) find an unbiased estimatorW for g(θ), i.e., E[W ] = g(θ); (Sometimes

we find that E(Y ) = a · g(θ) + b, then W = (Y − b)/a will be an
unbiased estimator for g(θ).)

(c) calculate the conditional expectation E(W |Y = y) = φ(y);
(d) by Rao-Blackwell theorem, conclude that φ(y) is a MVUE for g(θ).
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Example 3 : From bi-variate normal distribution, we know that Yi|xi ∼
N(βxi, 1), where the variance is standardized to 1. The joint density func-
tion can be factored as follows,

f(y1, ..., yn |x1, ..., xn;β ) = (2π)−
n
2 exp{−12Σi[yi − βxi]

2}
=
©
exp[βΣixiyi − 1

2β
2Σix

2
i ]
ª

·
n
(2π)−

n
2 exp[−12Σiy2i ]

o
.

Because E(Σixiyi) = Σi[xiE(yi)] = βΣix
2
i , we know E[Σixiyi/Σix

2
i ] = β,

i.e., Σixiyi/Σix2i is an unbiased estimator for β. By the factorization
criterion, we know

k1(y1, ..., yn;x1, ..., xn;β) = exp

½
βΣixiyi − 1

2
β2Σix

2
i

¾
= exp

½
Σix

2
i

·
β
Σixiyi
Σix2i

− 1
2
β2
¸¾

implies that Σixiyi/Σix2i is sufficient for β. Therefore, Σixiyi/Σix
2
i is a

minimum variance unbiased estimator for β.

3. Cramer-Rao Lower Bound

Let X be a random variable with p.d.f. f(x; θ). Define a score vector g =
∂ ln f(x;θ)

∂θ and H = ∂2 ln f(x;θ)
∂θ∂θ0 . We can show that E(g) = 0 and var(g) = −E(H)

as follows.
Starting from

R
f(x; θ)dx = 1 and taking derivatives with respect to θ, we haveZ

∂f(x; θ)

∂θ
dx = 0Z

∂f(x; θ)/f(x; θ)

∂θ
f(x; θ)dx = 0Z

∂ ln f(x; θ)

∂θ
f(x; θ)dx = 0

E(g) = 0.

Starting from
R ∂ ln f(x;θ)

∂θ f(x; θ)dx = 0 and taking derivatives with respect to θ
again, we have Z ·

∂2 ln f(x; θ)

∂θ∂θ0
f(x; θ) +

∂ ln f(x; θ)

∂θ

∂f(x; θ)

∂θ

¸
dx = 0Z ·

∂2 ln f(x; θ)

∂θ∂θ0
f(x; θ) +

∂ ln f(x; θ)

∂θ

∂f(x; θ)/f(x; θ)

∂θ
f(x; θ)

¸
dx = 0Z "

∂2 ln f(x; θ)

∂θ∂θ0
f(x; θ) +

µ
∂ ln f(x; θ)

∂θ

¶2
f(x; θ)

#
dx = 0

E(H) +E(g2) = 0

var(g) = −E(H).
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Let θ̂(x1, ..., xn) be any unbiased estimator for θ, then E[θ̂(x1, ..., xn)] = θ
implies Z

· · ·
Z

θ̂(x1, ..., xn)f(x1; θ) · · · f(xn; θ)dx1 · · · dxn = θZ
· · ·
Z

θ̂(x1, ..., xn)f(x1; θ) · · · f(xn; θ)
Xn

i=1

∂ ln f(xi; θ)

∂θ
dx1 · · · dxn = 1

E
h
θ̂(x1, ..., xn)Σigi

i
= 1

cov
h
θ̂(x1, ..., xn),Σigi

i
+E[θ̂(x1, ..., xn)] ·E(Σigi) = 1

cov
h
θ̂(x1, ..., xn),Σigi

i
= 1.

Using the fact that
¯̄̄
ρθ̂,Σigi

¯̄̄
6 1 and ρθ̂,Σigi

q
var(θ̂)

p
var(Σigi) = 1, we have

var(θ̂) > 1
var(Σigi)

= 1
nvar(gi)

= 1
nE(gg0) = − 1

nE(H) =
1
n [I(θ)]

−1, where I(θ) ≡
−E[H] is known as Fisher information matrix.

For univariate case, the CRLB for an unbiased estimator θ̂ is 1
n [I(θ)]

−1. For
multivariate case, the CRLB for an unbiased estimator θ̂ is [I(θ)]−1. If an unbiased
estimator achieves the CRLB, then it is efficient, i.e., MVUE. The converse need
not be true.

4. Maximum Likelihood Estimators

(1) Regularity conditions:

D1: lnL(x; θ),g = ∂ lnL(x;θ)
∂θ ,H = ∂2 lnL(x;θ)

∂θ∂θ0 ;
D2: E(g) = 0;
D3: V ar(g) = −E(H).

(2) MLE properties:
M1: consistency: p lim θ̂ML = θ;
M2: asymptotic normality: θ̂ML

a→N{θ, [I(θ)]−1},
where I(θ) = −E(H) = E(gg0) = V ar(g);
M3: asymptotic efficiency: θ̂ML is asymptotically efficient and achieves

the CRLB;
M4: invariance: the MLE of c(θ) is c(θML).

(3) Estimating the asymptotic variance of the MLE:
Using one of the following three alternatives expressions evaluated at

θ̂ML to get Est.Asy.V ar(θ̂).

[I(θ̂)]−1 =

(
−E

"
∂2 lnL(θ̂)

∂θ̂∂θ̂0

#)
;

[̂I(θ̂)]−1 =

(
−
"
∂2 lnL(θ̂)

∂θ̂∂θ̂0

#)
;

[̂̂I(θ̂)]−1 = [Ĝ0Ĝ]−1,

where
Ĝ0 = (ĝ1 ĝ2 ... ĝn), and ĝi = ∂ lnL(θ̂)/∂θ̂.
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5. Concepts on Hypothesis Testing

(1) A test is a specification of a critical region whereas a critical region is the
region used to reject H0.

(2) Power function is the probability of rejecting H0.
(3) Significance level (size of the critical region, or the α level of the test) is

the maximum of the power function given H0 is true.
H0 is true (θ = θ0) H0 is false (θ = θA)

Reject H0 Tyep I Error (α) Correctness (1− β)
Accept H0 Correctness (1− α) Type II Error (β)

(4) The power function K(θ0) is the probability of rejecting H0 given H0 is
true (θ = θ0), and the power function K(θA) is the probability of rejecting
H0 given H0 is false (θ = θA). Denote the critical region by C, then
K(θ0) = Pr(x ∈ C; θ = θ0) and K(θA) = Pr(x ∈ C; θ = θA).

(5) For a fixed α, we want to maximize the power 1 − β, i.e., to maximize
the probability of rejecting H0 given H0 is false. Equivalently, we want to
minimize type II error, i.e., to minimize the probability of not rejecting
H0 given H0 is false.

(6) C is a best critical region of size α if
(a) Pr(x ∈ C; θ = θ0) = α;
(b) For any other critical region A of size α, i.e., Pr(x ∈ A; θ = θ0) = α,

we have Pr(x ∈ C; θ = θA) > Pr(x ∈ A; θ = θA).
(Intuitively, C corresponds to the highest power 1− β.)

(7) Neyman-Pearson Theorem
Given H0 : θ = θ0 and HA : θ = θA. If for some k > 0

(a) L(θ=θ0;x)
L(θ=θA;x)

6 k,∀x ∈ C;

(b) L(θ=θ0;x)
L(θ=θA;x)

> k,∀x ∈ C̄;
(c) Pr(x ∈ C; θ = θ0) = α;

then C is the best critical region of size α for testing H0 vs. HA.
Intuitively, this theorem says that given the size if the sample likelihood under

the null hypothesis is minimal, relative to the alternative, for realizations inside the
critical region, and if the sample likelihood under the null is maximal, relative to
the alternative, for realizations outside the critical region, then the critical region
concerned is the best.

6. Hypothesis Testing Statistics

H0 : c(θ) = q (J equations)

(1) Likelihood ratio test statistic: (compute both the restricted and the un-
restricted model)

λ =
L̄R
L̄U

.

Under the null hypothesis, −2 lnλ a→χ2(J).
(2) Wald test statistic: (compute only the unrestricted model)

W = [c(θ̂)− q]0{V ar[c(θ̂)− q]}−1[c(θ̂)− q].
Under the null hypothesis, W

a→χ2(J).
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(3) Lagrangian multiplier test statistic: (compute only the restricted model)

LM =

"
∂ ln(θ̂R)

∂θ̂R

#0
{I(θ̂R)}−1

"
∂ ln(θ̂R)

∂θ̂R

#
.

Under the null hypothesis, LM
a→χ2(J).

(4) Graphical representation of the three test statistics.

ln ( )L θ

LR

WLM

ln ( )d L
d

θ
θ

( )c θ
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CHAPTER 5

Matrix Algebra

1. Algebraic Manipulation of Matrices

(1) For C(N×K) = A(N×N)B(N×K), we want to write them into the format
of summation so as to facilitate the computation. But how should we
arrange the matrices into vectors?

If we write C = (c1 ... cK) in stack of columns, then we have ck =
Abk. In this process, we arrange matrix B in the same format of C so
that the two sides of ck = Abk are conformable. In writing the right-
hand-side into a summation, we can’t break bk, so the only choice left
is to break up A while keeping the format of columns conforming with
ck. So we have to arrange A in the format of A = (a1 ... aN ) and each
element of bk will enter the summation individually. (Keep in mind the
usual regression function in matrix notation y = Xb.) Therefore, we have
ck =

P
n bnkan, and we say each column of C is a linear combination of

columns of A.
If we write C = (c10...cN 0)0 in stack of rows, then we have cn = anB.

In this process, we arrange matrix A in the same format of C so that the
two sides of cn = anB are conformable. In writing the right-hand-side
into a summation, we can’t break an, so the only choice left is to break
up B while keeping the format of rows conforming with cn. So we have to
arrange B in the format of B = (b10...bN0)0 and each element of an will
enter the summation individually. Therefore, we have cn =

P
k ankb

n,
and we say each row of C is a linear combination of rows of B.

(2) For XN×K , we want to write X0X into the format of a summation of
matrices. How should we arrange XN×K? First of all, we realize that
each element of the summation is a K ×K matrix. If we arrange XN×K
as (x1...xK), we are going to end up with 1 × 1 element for the final
matrix. Clearly this is not the result we want. So if we arrange XN×K as
(x10...xN 0)0, we will get what we wanted: X0X =

P
n x

n0xn.
(3) A couple of rules:

(ABC)0 = C0B0A0;
(ABC)−1 = C−1B−1A−1,if all matrices concerned are nonsingular;
a0a = tr(a0a) = tr(aa0);
tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC).
(The trace of a square matrix is the sum of its diagonal elements.)

(4) A few rules regarding summations:
Σxi = i

0x;
1
nΣxi = (i

0i)−1i0x;
Σx2i = x

0x;

27
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Σ(xi − x̄)2 = (x− ix̄)0(x− ix̄);
Σ(xi − x̄)(yi − ȳ) = (x− ix̄)(y − iȳ).

(5) Define M0 = I − i(i0i)−1i0, which is an idempotent matrix, and we have
the following results.

M0i = 0;
x− ix̄ =M0x;
Σ(xi − x̄) = i0M0x = 0;
Σ(xi − x̄)2 = (M0x)0(M0x) = x0M0x;
Σ(xi − x̄)(yi − ȳ) = (M0x)0(M0y) = x0M0y.
(If M is an idempotent matrix, then MM =M; if M is idempotent

and symmetric, then MM0 =M.)

2. Geometry of Matrices

(1) The K elements of a column vector can be viewed as the coordinates of a
point in a K-dimensional space. In particular, the two-dimensional plane,
R2, is the set of all vectors with two real-valued coordinates. This plane
has two important properties. R2 is closed under scalar multiplication;
every scalar multiple of a vector in the plane is also in the plane. R2 is
also closed under addition; the sum of any two vectors in the plane is
always a vector in the plane. Now we define a vector space as any set of
vectors that is closed under scalar multiplication and addition.

(2) A set of vectors in a vector space is a basis for that vector space if any
vector in the vector space can be written as a linear combination of them.
The basis of a vector space is not unique, since any set of vectors that
satisfies the definition will do. But for any particular basis, only one
linear combination of them will produce another particular vector in the
vector space. Note that exactly K vectors are required to form a basis for
RK .

(3) Although the basis for a vector space is not unique, not every set of K
vectors will suffice. That is because it may be the case that some of the
vectors are linearly dependent. A set of vectors is linearly dependent if
any one of the vectors in the set can be written as a linear combination
of the others. A set of vectors is linearly independent if and only if the
only solution to α1a1+α2a2+ ...+αKaK = 0 is α1 = α2 = ... = αK = 0.
Otherwise, we can always choose one non-zero αi 6= 0 to scale all vectors
other than ai to reach the vector ai. Now we know that a basis for a
vector space of K dimensions is any set of K linearly independent vectors
in that space and that any set of more than K vectors in RK must be
linearly dependent.

(4) The set of all linear combinations of a set of vectors is the vector space that
is spanned by those vectors. For example, by definition, the space spanned
by a basis for RK is RK . Consider two three-coordinate vectors whose
third element is zero. These two vectors don’t span the three-dimensional
space R3 in that any linear combinations of these two vectors will have a
third coordinate of zero and any vector with nonzero third coordinate is
not covered. The plane spanned by these two vectors is called a subplane,
or two-dimensional subspace in R3. Note that this subplane is not R2; it
is the set of vectors in R3 whose third coordinate is zero. By the same
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logic, any line in R3 is a one-dimensional subspace, in this case, the set
of all vectors in R3 whose coordinates are multiples of those of the vector
that define the line.

The space spanned by a set of vectors in RK has at most K dimen-
sions. If this space has fewer than K dimensions, it is a subspace, or
hyperplane. But the important point is that every set of vectors spans
some space; it may be the entire space in which the vectors reside, or it
may be some subspace of it.

(5) We view a matrix as a set of column vectors. The column space of a
matrix is the vector space that is spanned by its column vectors. If the
matrix contains K columns, its column space might have K dimensions,
but it certainly can have less than K dimensions if not all K columns are
linearly independent. The column rank of a matrix is the dimension of the
vector space that is spanned by its columns. It follows that the column
rank of a matrix is equal to the largest number of linearly independent
column vectors it contains.

(6) The column rank and row rank of a matrix are equal and the row space
and column space of a matrix have the same dimension. If the column
rank of a matrix happens to equal the number of columns it contains, the
matrix is said to have full column rank. Since the row and column ranks
of a matrix are always equal, we can speak unambiguously of the rank of
a matrix. For either the row rank or the column rank, we have

rank(A) = rank(A0) ≤ min(#rows,#cols).
(7) A matrix is said to have full rank if its rank is equal to the number of

columns it contains. Of particular interest will be the distinction between
full rank and short rank matrices. The distinction turns of the solutions
to Ax = 0. If a nonzero vector x for which Ax = 0 exists, A does not
have full rank.

(8) In a product matrix C = AB, every column of C is a linear combination
of the columns of A, so each column of C is in the column space of A.
It is possible that the set of columns in C could span this space, but it
is not possible for them to span a higher-dimension space. At best, they
could be a full set of linearly independent vectors in A’s column space.
We conclude that the column rank of C could not be greater than that of
A. Similarly, we have the conclusion that the row rank of C could not be
greater than that of B. Therefore, we have

rank(AB) ≤ min(rank(A), rank(B)).
In particular, for matrices A(M×N) and B(N×N), we have

rank(AB) = rank(A).

For any matrix A, we also have

rank(A) = rank(A0) = rank(A0A) = rank(AA0).

(9) The determinant of a matrix is nonzero if and only if it has full rank.
For a diagonal matrix D(K×K), its column vectors define a “box” in RK
whose sides are all at right angles to one another. (Each column vector
defines a segment on one of the axes.) Its “volume,” or determinant, is
simply the product of the lengths of the sides, i.e., the product of the
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diagonal elements of the matrix D. Two useful conclusions for general
square matrices D , C and scalar c are:

|cD| = cK |D| and |DC| = |D| · |C| .
(10) Given a column vector y and matrix X, we are interested in expressing y

as a linear combination of the columns of X. There are two possibilities.
(1) If y lies in the column space of X, we shall be able to find a vector

b such that y = Xb.
(2) If y is not in the column space of X, then there is no b such that

y = Xb holds. What we can do instead is to find a b that produces the
smallest e such that y = Xb+ e holds. That is, we are trying to find a b
such that the distance between y and Xb will be shortest. The length, or
norm, of a vector e is kek = √e0e. It turns out that e with the shortest
length must be perpendicular, or orthogonal, to Xb. We can then use the
definition of orthogonal vectors to find out the vector b. Two vectors a
and b are orthogonal, denoted as a⊥b, if and only if a0b = b0a = 0.

Note that the linear combination Xb is called the projection of y into
the column space of X. Suppose that the projection of another vector y∗

shares the same projection with y in the column space of X, then how
can we determine whether y or y∗ is closer to its projection? We cannot
use the length of the residual vector e or e∗ to determine the closeness,
because the length of the residual vector will be affected by the lengths
of the original vectors. In this case, we would use the angle between the
original vector (y or y∗) and its projection to determine the closeness.
The angle θ between two vectors a and b satisfies

cos θ =
a0b

kak · kbk ,

which takes care of the length of vectors.
(What will happen if y is orthogonal to the column space of X? The

trivial answer would be that the projection will be zero so that there is no
projection, meaning that we shouldn’t really regress y on X.) Add one
section on geometric representation of SST = SSR+SSE and F-statistic.

3. Miscellaneous

(1) If A is positive definite, then for any nonzero vector v, then the quadratic
form v0Av is also positive definite; if A is positive definite, so is A−1; if
A(N×K) has full column rank and N > K, then A0A is positive definite
and AA0 is nonnegative definite; if A is positive definite and B is a
nonsingular matrix, then the quadratic form B0AB is positive definite.

(2) Some important differentiation rules:
∂Ax
∂x = A0;
∂Ax
∂x0 = A;
∂x0Ax
∂x = (A+A0)x;

∂x0A
∂x = A;

∂x0A
∂x0 = A

0;
∂x0Ax
∂A = xx0;

∂Ac(x)
∂x = C0A0,where C = ∂c(x)

∂x0 .



CHAPTER 6

Classical Regression Model

1. Basic Estimation

(1) Assumptions:
(a) linearity: y = Xβ + ε;
(b) identification condition: X(n×K) has column rank K;
(c) conditional zero mean: E(ε|X) = 0;
(d) homoskedasticity and non-autocorrelation: E(εε0|X) = σ2I;
(e) non-stochastic regressors;
(f) normality of disturbance: ε|X ∼ N(0, σ2I);
Typical violations of assumption (a) are: wrong regressors (such as

inclusion of irrelevant explanatory variables or exclusion of relevant vari-
ables), non-linearity or random coefficients. Multicollinearity refers to the
violation of assumption (b). Once assumption (c) is violated, there will
be an bias in the intercept. There may be many forms and shapes of
violations of assumption (d), but we only consider two special cases: het-
eroskedasticity or autocorrelated errors. Assumption (e) implies that it is
possible to repeat the sample with the same independent variables, and
some problems arise from the violation of this assumption. For exam-
ple, measurement error in independent variables, autoregression, or using
lagged values of dependent variables as independent variables, or simul-
taneous equation system in which dependent variables are determined by
the interaction of multiple equations. The assumption (f) is not manda-
tory in most cases. But without assumption (f), we often don’t know the
small sample properties of the estimators.

(2) y = Xβ + ε = Xb+ e
Normal equations: X0e = 0 or X0Xb = X0y;
Coefficients: b = (X0X)−1X0y.

(3) Simple regression: y = α+ βx+ ε = a+ bx+ e

a = ȳ − bx̄; b =

P
(xi − x̄)(yi − ȳ)P
(xi − x̄)2

=

P
(xi − x̄)yiP
(xi − x̄)2

=

P
xiyi − nx̄ȳP
x2i − nx̄2

.

If ε ∼ N(0, σ2), then we have

a ∼ N

µ
α,

σ2Σx2i
nΣ(xi − x̄)2

¶
, and b ∼ N

µ
β,

σ2

Σ(xi − x̄)2

¶
.

(4) Regression with a constant term:P
ei = 0(X

0e = 0⇒ x1
0e = 0⇒ i0e = 0)

ȳ = x̄0b(y = Xb+ e⇒ i0y = i0Xb+ i0e⇒ ȳ = x̄0b)
¯̂y = ȳ(ŷ = y− e⇒ i0ŷ = i0y− i0e⇒ ¯̂y = ȳ)

31
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2. Special Matrices

(1) Residual MakerM = I−X(X0X)−1X0

My = e⇒ e is the residual from regressing y onX, where e = y−Xb;
MX = 0⇒ 0 is the residual from regressing X on X;
Me = e⇒Me =M(y− ŷ) =My−MXb =My = e;
Mε = e⇒ e =My =M(Xβ + ε) =MXβ +Mε =Mε;
My =Me =Mε = e.
In the special case of simple regression model, we have M0 = I −

i(i0i)−1i0 andM0y = e,where e = y−iȳ;M0i = 0;M0e = e for regression
with a constant term since we have i0e = 0 for regression with a constant
term.

(2) Projection Matrix (Fitted Value Maker) P = I−M
Py = ŷ⇒ ŷ is the fitted value from regressing y on X;
PX = X⇒ X is the fitted value from regressingX onX; particularly,

PM =MP = 0.
(3) X0e = 0, e0X = 00;

e0e = y0M0My = y0My = y0e = e0y = y0y−b0X0Xb = y0y− ŷ0Xb.
(4) Matrix representation of simple regression with a constant term.

SST =
P
(yi− ȳ)2 is SST = y0M0

y in matrix notation, with degrees
of freedom n− 1;

SSR =
P
(ŷi − ȳ)2 is SSR = ŷ0M0

ŷ = ŷ0M0
y in matrix notation,

with degrees of freedom K − 1;
SSE =

P
e2i is SSE = e0e in matrix notation, with degrees of free-

dom n−K.
The degrees of freedom for e0e can be showed as e0e = ε0Mε and

tr(M) = tr[I − X(X0X)−1X0] = tr(In) − tr[(X0X)−1X0X] = tr(In) −
tr(IK) = n−K.

(5) y = Xb+ e⇒ y0M0
y = ŷ0M0

ŷ+ e0e
We can get this result by pre-multiplying y by M0 and then y0 and

use M0e = e and X0e = 0, e0X = 00. Note that this is valid only for
regression with a constant term since M0e = e comes from a regression
with constant term.

(6)

R2 =
b0X0M0

Xb

y0M0y
= 1− e0e

y0M0y
= ρ2y,ŷ; R̄

2 = 1− e0e/(n−K)

y0M0y/(n− 1) .

To understand why the adjusted R̄2 is necessary, let’s first consider
the fact that the inclusion of irrelevant explanatory variables can never
reduce R2. This is the case because the lean model is restricted relative to
the fattened model and the restrictions can only make it more difficult to
minimize the mean squared error. By throwing everything into the kitchen
sink, we can get a superficially large R2. The adjusted R̄2 addresses this
particular problem by accounting for degrees of freedom. If an additional
regressor covers very little of the unexplained variation in the dependent
variable, then R̄2 falls where as R2 rises.

(7) b = (X0X)−1X0y = β+(X0X)−1X0ε andE(b) = β, V ar(b) = σ2(X0X)−1.
(8) For y = X1b1 +X2b2 + e, by partitioned matrix rule, we have

b1 = (X1
0M2X1)

−1X1
0M2y = (X1

0X1)
−1X1

0(y −X2b2)
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and V ar(b1) = σ2(X0
1M2X1)

−1

b2 = (X2
0M1X2)

−1X2
0M1y = (X2

0X2)
−1X2

0(y −X1b1)
and V ar(b2) = σ2(X0

2M1X2)
−1

3. Gauss-Markov Theorem

(1) The least square estimator is b = (X0X)−1X0y = β + (X0X)−1X0ε.
Let’s construct another linear estimator b0 = Cy = CXβ + Cε. For
b0 to achieve unbiasedness, it is necessary that CX = I. Let D =
C− (X0X)−1X0, then Dy = b0 − b and DX = CX− (X0X)−1X0X = 0.
Then b0 = [(X0X)−1X0 + D]y and DX = 0 imply that V ar(b0) =
σ2[(X0X)−1 + DD0], while we know V ar(b) = σ2(X0X)−1. Therefore,
V ar(b0) > V ar(b).

Conclusion: The least square estimator is B.L.U.E., and the minimum
variance linear unbiased estimator of w0β is w0b. Note that this theorem
holds regardless of the distribution of the disturbance.

4. Test Statistics

(1) Recall that for a bivariate distribution, we have E(Y) = EX[E(Y|X)],
Cov(X,Y) = [Y, E(Y|X)], V ar(Y) = V arX[E(Y|X)] + EX[V ar(Y|X)].
Interpretation again.

(2) Unbiased estimator S2 to σ2: S2 = 1
n−K e

0e⇒ Est.V ar(b) = S2(X0X)−1.
(3) t statistic:

bk−βk√
σ2(X0X)−1kk

∼ N(0, 1) and (n−K)S2
σ2 ∼ χ2(n−K) imply that

(bk−βk)/
√
σ2(X0X)−1kk√

(n−K)S2/[σ2(n−K)] =
bk−βk√

S2(X0X)−1kk
∼ t(n−K).

(1) Critical region for a two-side test for bk, given significance level λ:

H0 : bk = βk;H1 : bk 6= βkis

¯̄̄̄
bk−βk√

S2(X0X)−1kk

¯̄̄̄
> tλ

2

.

(2) Critical region for a one-side test for bk, given significance level λ:

H0 : bk = βk;H1 : bk > βkis
bk−βk√

S2(X0X)−1kk
> tλ

2
;

H0 : bk = βk;H1 : bk < βkis
bk−βk√

S2(X0X)−1kk
< t−λ2

;

(3) Confidence interval for βk, given confidence level (1− λ) is

Pr(t−λ2
6 bk−βk√

S2(X0X)−1kk
6 tλ

2
) = 1− λ.

(4) (n−K)S2
σ2 ∼ χ2(n − K) The confidence interval for σ2, given confidence

level α, is Pr(χ2a 6 (n−K)S2
σ2 6 χ2b) = α.

(5) R2/(K−1)
(1−R2)/(n−K) ∼ F (K − 1, n−K) for H0 : β2 = 0 (coefficients other than
the constant term) and ε ∼ N(0, σ2). The decision rule is that if the
F -stat falls in the critical region, or if the probability of “the F -stat falls
in the critical region” is less than the desired significance level, reject the
null hypothesis.
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5. Asymptotics

(1) Definition of consistency : θ̂ is consistent for θ if p lim θ̂ = θ. According to
convergence in mean square, if lim

n→∞E(θ̂) = θ and lim
n→∞V ar(θ̂) = 0, then

we have p lim θ̂ = θ, i.e., θ̂ is consistent for θ. Particularly, E(x̄) = µ and
V ar(x̄) = σ2

n implies that p lim x̄ = µ.
(2) Consistency of β̂LS regardless of distribution of disturbances: (p lim β̂LS =

β)

Assume that lim
n→∞

X0X
n = Q, and Q is a positive definite matrix, then

we have β̂LS = β+(X0X)−1X0ε = β+(X
0X
n )−1X

0ε
n . Taking the probability

limits, we have p lim β̂LS = β +Q−1p lim(X
0ε
n ) = β +Q−1p lim w̄,where

w̄ = X0ε
n . E(w̄) = E(X

0ε
n ) = 0, V ar(w̄) = V ar(X

0ε
n ) = ( 1n)

2X0Xσ2 =
σ2

n
X0X
n , and lim

n→∞V ar(w̄) = 0Q = 0.

By the definition of convergence in mean square, we have p lim w̄ =
E(w̄) = 0.

Finally, p lim β̂LS = β +Q−1p lim w̄ = β.
Note that we don’t need assume normality here. What we need is

that the regressors are well behaved such that lim
n→∞

X0X
n = Q is a positive

definite matrix.
(3) Asymptotic normality of β̂LS regardless of distribution of disturbances:

β̂LS = β + (X0X)−1X0ε = β + (X
0X
n )−1X

0ε
n ⇒ √

n(β̂LS − β̂) =

(X
0X
n )−1(X

0ε√
n
).

We know that lim
n→∞(

X0X
n )−1 = Q−1 and need to find the limiting

distribution of X
0ε√
n
.

X0ε√
n
=
√
nX

0ε
n =

√
nw̄ =

√
n(w̄−E(w̄)), since E(w̄) = 0.

V ar(
√
nw̄) = nV ar(w̄) = σ2(X

0X
n ), lim

n→∞V ar(
√
nw̄) = σ2Q.

By the central limit theorem, we have
√
n(w̄−E(w̄))

d−→ N(0, σ2Q),

i.e., X
0ε√
n

d−→ N(0, σ2Q) and thus Q−1X
0ε√
n

d−→ N [0,Q−1(σ2Q)Q−10], i.e.,
√
n(β̂LS − β)

d−→ N(0, σ2Q−1)⇒ β̂LS
a−→ N [β, σ2Q

−1
n ].

In practice, it is necessary to estimate Q−1
n with (X0X)−1

n2 and σ2 with
e0e
n−K . Note that we need not to assume normality here. What we need is
that the regressors are well behaved such that lim

n→∞(
X0X
n )−1 = Q−1 is a

positive definite matrix.
(4) Consistency of S2:

Since

S2 = 1
n−K ε0Mε

= 1
n−K [ε

0ε− ε0X(X0X)−1X0ε]

= n
n−K [

ε0ε
n − ε0X

n (
X0X
n )−1X

0ε
n ],

we have p limS2 = 1 · [p lim( ε0εn ) − 00Q−10] = p lim( ε
0ε
n ). Assume εi

behaves well in the sense that the mean and variance of ε̄2 are finite, we
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have p lim( ε
0ε
n ) = σ2. Then p limS2 = σ2 and p limS2(X

0X
n )−1 = σ2Q−1.

Note again that we don’t have to assume normality here. If we do, then
we can get the same result much easier: (n − K)S

2

σ2 = χ2(n − K) and

thus E(S2) = σ2 and V ar(S2) = 2σ4

n−K . Since lim
n→∞V ar(S2) = 0, we get

p limS2 = σ2, by the definition of convergence in mean square.

6. Delta Method and Inference

(1) Est.Asy.V ar(β̂LS) = S2(X0X)−1.
(2) Let f(β̂LS) be a set of J continuous, linear or nonlinear functions of the

least square estimators, and let C = ∂f(β̂LS)

∂β̂LS 0
. By the Slutsky theorem,

p lim f(β̂LS) = f(β)and p limC = ∂f(β)/∂β0 ≡ Γ, then
f(β̂LS)

a−→ N [f(β),Γ(σ
2

n Q
−1)Γ0].

In practice, Est.Asy.V ar[f(β̂LS)] = C[S2(X0X)−1]C0. If any of the func-
tions is nonlinear, the property of unbiasedness that holds for β̂LS may
not carry over to f(β̂LS), but f(β̂LS) is consistent for f(β).

(3) Since β̂LS
a−→ N [β, σ2Q

−1
n ], we can construct the following statistic: t(n−

K) = β̂k−βk
[S2(X0X)−1kk ]

1
2

.

We also know that p limS2(X
0X
n )−1 = σ2Q−1, then

qk =
β̂k−βk

[
σ2

n Q−1kk ]
1
2

a−→ N(0, 1).

(4)

F̂ =
(Rβ̂LS − q)0 [σ2R(X0X)−1R0]−1(Rβ̂LS − q)/J

[(n−K)S2/σ2]/(n−K)

=
(Rβ̂LS − q)0[σ2R(X0X)−1R0]−1(Rβ̂LS − q)/J

S2/σ2
.

Since p lim(S
2

σ2 ) = 1, we only consider the numerator. Hence we have

JF̂ = ( εσ )
0X(X0X)−1R0[R(X0X)−1R0]−1R(X0X)−1X0( εσ )

= ( εσ )
0L( εσ ),

where rank(L) = J . Therefore, we have JF̂ a−→ χ2(J). Particularly, when
J = 1, F (1, n−K)

a−→ χ2(1).
(5) Another version of the same property is stated as the limiting distribution

of the Wald test.
If
√
n(β̂LS − β)

d−→ N(0, σ2Q−1) and H0 : Rβ − q = 0 is true, then
W = (Rβ̂LS − q)0[S2R(X0X)−1R0]−1(Rβ̂LS − q)
= JF̂

a−→ χ2(J).

(6) Differentiate
R
x
L(x; θ)dx = 1 with respect to θ and use ∂L

∂θ = L · ∂ lnL∂θ , we
get E(∂ lnL∂θ ) =

R
x
∂ lnL
∂θ Ldx = 0. Differentiate this identity further with

respect to θ, we get V ar(∂ lnL∂θ ) = E(∂ lnL∂θ )2 = −E(∂2 lnL∂θ∂θ0 ) ≡ I(θ).
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(7) Use the Neyman-Pearson theorem to find the critical region for the test
H0 : Rβ − q = 0.

(Rβ̂ML − q)0[R(X0X)−1R0]−1(Rβ̂ML − q)/J
(y−Xβ̂ML)0(y−Xβ̂ML)/(n−K)

> C∗.

Note that when we assume normality, β̂LS = β̂ML implies that it is the
conventional F -test.

7. OLS vs. MLE

(1) For y = Xβ+ε, where ε ∼ N(0, σ2I), we have the following set of results.
β̂ML = (X

0X)−1X0y, E(β̂ML) = β, V ar(β̂ML) = σ2(X0X)−1;
β̂LS = (X

0X)−1X0y, E(β̂LS) = β, V ar(β̂LS) = σ2(X0X)−1;
σ̂2ML =

e0e
n , E(σ̂2ML) =

n−K
n σ2;V ar(σ̂2ML) =

2(n−K)σ4
n2 ;

σ̂2LS =
e0e
n−K , E(σ̂2LS) = σ2;V ar(σ̂2LS) =

2σ4

n−K ;

[I(θ)]−1 =
µ

σ2(X0X)−1 0

0 2σ4

n

¶
.

Conclusion: both β̂ML and β̂LS are unbiased and efficient. σ̂2ML is
biased and σ̂2LS is unbiased, but σ̂

2
ML is more efficient than σ̂2LS although

none of them achieves the CRLB.
(2) Statistical Properties of Estimators

(a) β̂LS and σ̂2LS have all the nice properties of maximum likelihood
estimators (MLE) under the assumption of normality.

(b) The desirable properties of MLE:
M1: consistency: p lim θ̂ML = θ;
M2: asymptotic normality: θ̂ML

a−→ N(θ, [I(θ)]−1), where I(θ) =
−E(H) = E(gg0) = V ar(g);
M3: asymptotic efficiency: θ̂ML is asymptotically efficient and achieves
the CRLB;
M4: invariance: the MLE of c(θ) is c(θ̂ML).

(c) Since β̂LS = β̂ML, we know that β̂LS has all the MLE properties.
(d) Does σ̂2LS = S2 have the same MLE properties?

E(S2) = σ2, E(σ̂2ML) =
n−K
n σ2 < σ2.By the second property of

MLE, we have
√
n(σ̂2ML − σ2)

d−→ N(0, 2σ4).
Then we have

zn = (1− K
n )
√
n(σ̂2ML − σ2) + K√

n
σ2

= (1− K
n )N(0, 2σ

4) + K√
n
σ2.

As n → ∞, KN → 0, K√
n
→ 0, we have zn

d−→ N(0, 2σ4). In the

meanwhile, we know σ̂2ML =
n−K
n S2, then

zn =
n−K
n ·√n · (n−Kn

2 − σ2) + K√
n
σ2

=
√
n(S2 − σ2).

Hence
√
n(S2 − σ2)

d−→ N(0, 2σ4), i.e., σ̂2LS = S2 has the same prop-
erties as σ̂2ML.
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(3) Let θ̂ML be the MLE for θ, and let c(θ) == [c1(θ) c2(θ) ... cK(θ)]
0.

By the invariance property of MLE, we know c(θ̂) is the MLE for c(θ).
How can we find the Asy.V ar[c(θ̂)] then? Refer back to G.4.11.6., we
have Asy.[nV ar(zn)] = Σ and Asy.{nV ar[c(zn)]} = CΣC0, where C =
∂c(zn)
∂zn0

, so Asy.{nV ar[c(zn)]} = C{Asy.[nV ar(zn)]}C0. Here we have

Asy.{nV ar[c(θ̂)]} = C{Asy.[nV ar(θ̂)]}C0, where C = ∂c(θ)
∂θ0 . Therefore,

we have

Asy.{V ar[c(θ̂)]} = 1
n ·C

³
lim
n→∞{n[I(θ)]

−1}
´
C0

= 1
n ·C

³
lim
n→∞[I(θ)/n]

−1
´
C0.

(4) Wald test: H0 : f(β) = 0;H1 : f(β) 6= 0
W = f(β̂)0{G(β̂)[S2(X0X)−1]G(β̂)0}−1f(β̂)
∼ χ2(J),

where J is the number of restrictions and G(β̂) = ∂f(β̂)

∂β̂0
.

8. Partitioned Regression

If we partition the explanatory variables into two subsets, X1 and X2, we know
that three types of variations in explanatory variables are competing against each
other in explaining the dependent variables, namely, the variations of X1 alone,
the variation of X2 alone, and the covariance between X1 and X2 if they are not
orthogonal. To get the coefficient vectors for X2 in the full model, we can take the
following steps that are equivalent to running the full model.

First, remove the variation caused by X1 alone by regressing the dependent
variable on X1. Second, remove the covariance between X1 and X2 by regressing
X2 onX1. Third, tease out the contribution byX2 alone by regressing the residuals
from the first step on the residuals from the second step.

(1) For a classical regression y = Xb+ e, we have b = (X0X)−1X0y, and the
residual is e =My, where M = I−X(X0X)−1X0.

If we letX = x1 and b = b1, we have y = x1b1+e, b1 = (x10x1)−1x10y
and the residual is e =M1y, where M1 = I− x1(x10x1)−1x10.

If we let X = (x1 x2) and b = (b∗1 b∗2), we have y = b∗1x1 + b∗2x2 + e,
b∗1 = (x01x1)−1x01(y−x2b∗2), b∗2 = (x02M1x2)

−1(x20M1y), where e =M∗y,
and M∗ = I− (x20M1)

0(x20M1x2)
−1(x20M1).

Under the special case where x1 and x2 are orthogonal (so that
M1x2 = x2), then the coefficients associated with x1 and x2 are the
same as the coefficients obtained from regressing y on x1 alone and y on
x2 alone, respectively.

(2) For a classical regression y = Xb+ e, we have b = (X0X)−1X0y, and the
residual is e =My, where M = I−X(X0X)−1X0.

Suppose that X = X1 and b = b1, we have y = X1b1 + e, b1 =
(X1

0X1)
−1X1

0y where e =M1y andM1 = I−X1(X1
0X1)

−1X1.
Suppose X = (X1 X2) and b = (b∗1 b

∗
2), we have y = b

∗
1X1+b

∗
2X2+

e, b∗1 = (X1
0X1)

−1X1
0(y −X2b

∗
2), b

∗
2 = (X

0
2M1X2)

−1(X2
0M1y), where

e =M∗y andM∗ = I− (X2
0M1)

0(X2
0M1X2)

−1(X2
0M1).
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Under the special case where X1 and X2 are orthogonal (so that
M1X2 = X2), then the coefficients associated with X1 and X2 are the
same as the coefficients obtained from regressing y on X1 alone and y on
X2 alone, respectively.

(3) If we regress y on X1, y = X1c1+u, then we have c1 = (X1
0X1)

−1X1
0y,

and the residual is u = M1y, where M1 = I − X1(X1
0X1)

−1X1. Note
that in u we don’t have the variation attributed by X1 alone.

If we next regress each column of X2 on X1, x2,k = X1c2,k+vk, then
we have C2 = (c1...cK), where ck = (X1

0X1)
−1X1

0x2,k and the residual
matrix is V =M1X2, whereM1 = I−X1(X1

0X1)
−1X1. Note that in V

we have removed the common variation between X1 and X2.
We then regress u on v, u = Vc3+w, then we have c3 = (V0V)−1V0u =

(X2
0M1X2)

−1(X2
0M1y) and the residual is w = MVu, where MV =

I−V(V0V)−1V0 =M∗. It’s clear now c3 captures the contribution from
the variation of X2 alone.

If we regress y on both X1 and X2, we should have y = X1(c1 −
C2c3) + X2 · c3 + w. It is easy to realize that c3 = b∗2, and we have
the Frisch-Waugh Theorem as follows: The subvector b∗2 in regression
y = b∗1X1+b

∗
2X2+e is the set of coefficients obtained when the residuals

from a regression of y on X1 alone are regressed on the set of residuals
obtained when each column of X2 is regressed on X1.

(4) If we set X2 = z in part (3), we have the following result: The coefficient
c on z in a multiple regression of y on W = (X z) is computed as c =
(z0Mz)−1(z0My) = (z∗0z∗)−1(z∗0y∗), where z∗ and y∗ are the residual
vectors from least squares regressions of z and y on X; z∗ = MXz and
y∗ =MXy.

(5) If we set X1 = i in part (3), we have M1 =M
0 = I− i(i0i)−1i0 and thus

u =M0y = y−iȳ and v =M0X2 = X2−iX̄0
2. Therefore, c3 is equivalent

to the coefficients obtained from the regression y− iȳ = (X2− iX̄2
0)c3+ξ.

This result can be stated as follows: The slopes in a multiple regression
that contains a constant term are obtained by transforming the data to
deviations from their means, then regressing the variable y in deviation
form on the explanatory variables, also in deviation form.



CHAPTER 7

Inference and Prediction

1. Single Restriction

Omitting a variable or equivalently adding an additional variable.
(1) Comparison on Variance:

(R): y = Xb∗ + e∗
b∗ = (X0X)−1X0y and V ar(b∗) = σ2(X0X)−1.
(U): y = Xd+ zc+ e
(d c)0 = [(X z)0 (X z)]−1(X z)0y, V ar(d c)0 = σ2[(X z)0 (X z)]−1,

and V ar(d) = V ar(b∗) + σ2(X0X)−1X0zz0X(X0X)−1/(z0Mz). Since
V ar(b∗) 6 V ar(d), our conclusion is : restrictions reduce variance.

(2) Comparison on R2:
(R): y = Xb∗ + e∗
(U): y = Xd+ zc+ e
We have e = y − Xd − zc and d = (X0X)−1X0(y − zc) = b∗ −

(X0X)−1X0zc. Hence e = y −Xb∗ − [zc−X(X0X)−1X0zc] = e∗ −Mzc
and thus e0e = e∗0e∗ − c2z0Mz. Since e∗0e∗ > e0e ⇒ R2∗ 6 R2, our
conclusion is: restrictions reduce R2.

(3) Test on the null hypothesis that the restrictions hold.

t2z =
(R2 −R2∗)/1

(1−R2)/(n−K)
, i.e., F (1, n−K) =

R2 −R2∗
(1−R2)/(n−K)

.

2. F-test on a Set of Restrictions

People often use t-test, F-test, and Chi-square test for making statistical infer-
ences. Note, however, these tests are valid for small samples only if the disturbance
terms are normally distributed. In the case of small samples with non-normal er-
rors, we have to rely on bootstrap or Monte Carlo techniques to obtain relevant
p-values.

Here is the intuition behind the F-test. Upon imposing a set of restrictions,
the minimization process becomes harder to implement and results in a larger
sum squared errors. The numerator of the F-statistic concerns about the “per-
restriction” increase of sum squared errors, and the denominator implies the “per-
error” contribution to sum squared errors. If the set of restrictions is not far away
from the truth, then the “standardized friction” shouldn’t be large.

Why do we care about degrees of freedom? If we were to explore a possible linear
relationship between shoe size and grade average point using only two observations,
we would obtain a bogus 100% fit as two points are needed to determine a line.
Adding another observation would reduce the fit but it remains large. To correct
for this type of bogus fit, we use only the number of "free" observations to compute
statistics.

39
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Null Hypothesis: Rβ = q
Let m = Rb − q, then E(m) = RE(b) − q = Rβ − q = 0 and V ar(m) =

V ar(Rb) = RV ar(b)R0 = σ2R(X0X)−1R0. We have m ∼ N [0, σ2R(X0X)−1R0]
andm0[V ar(m)]−1m ∼ χ2(J), i.e., (Rb−q)0[σ2R(X0X)−1R0]−1(Rb−q) ∼ χ2(J).

Since (n−K)S2
σ2 ∼ χ2(n−K), we have the following F-stat to test H0: Rβ= q.

F (J, n−K) =
(Rb− q)0[σ2R(X0X)−1R0]−1(Rb− q)/J

[(n−K)S2/σ2]/(n−K)

=
(Rb− q)0[R(X0X)−1R0]−1(Rb− q)/J

e0e/(n−K)

=
(Rb− q)0[S2R(X0X)−1R0]−1(Rb− q)

J
.

F-test is valid for any sample size (finite or large sample) so long as disturbances
are normally distributed.

3. A Set of Restrictions

Null Hypothesis: Rβ = q

(1) Comparison on variance:
(U): y = Xb+ e (without restrictions)
b = (X0X)−1X0y and V ar(b) = σ2(X0X)−1.
(R): y = Xb∗ + e∗ (with restrictions: Rβ = q)
b∗ = b− (X0X)−1R0[R(X0X)−1R0]−1(Rb− q) and
V ar(b∗) = V ar(b)−σ2(X0X)−1R0[R(X0X)−1R0]−1R(X0X)−1. Since

V ar(b∗) 6 V ar(b), our conclusion is that restrictions reduce variance.
(2) Comparison on R2:

(U): y = Xb+ e
(R): y = Xb∗ + e∗
We have e∗ = y−Xb∗ = (y−Xb)−(Xb∗−Xb) = e−X(b∗−b), and

thus e∗0e∗ = e0e+ (b∗ − b)0X0X(b∗ − b). Since e∗0e∗ > e0e⇒ R2∗ 6 R2,
our conclusion is that restrictions reduce R2.

(3) Test on the null hypothesis: Rβ = q

e∗0e∗ − e0e = (b∗ − b)0X0X(b∗ − b)
= (Rb− q)0[R(X0X)−1R0]−1(Rb− q)
= σ2m0[V ar(m)]−1m.

Since (Rb−q)0[σ2R(X0X)−1R0]−1(Rb−q) ∼ χ2(J) and (n−K)S2/σ2 ∼
χ2(J), we have

F (J, n−K) =
(e0∗e∗ − e0e)/J
e0e/(n−K)

=
(R2 −R2∗)/J

(1−R2)/(n−K)
.

Consider the independence of the numerator and the denominator:

Rb− q = R[β + (X0X)−1X0ε]− q = R(X0X)−1X0ε ≡ Tε and e =Mε.

It suffices to prove TM = 0, which follows from TM = R(X0X)−1X0[I−
X(X0X)−1X0] = 0.
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(4) Particularly, we have R2/(K−1)
(1−R2)/(n−K) ∼ F (K − 1, n − K) for H0 : β2 = 0

(coefficients other than the constant term). It is obvious that J = K − 1.
Since the restricted model will be y = iȳ + e, which has no explanatory
power, R2∗ = 0, we get the conventional F test.

4. Test a Subset of Coefficients

For y = X1β1 +X2β2 + ε, test H0 : β2 = 0.

(1) (R): y = X1b1∗ + e∗ vs. (U): y = X1b1 +X2b2 + e
b2 = (X2

0M1X2)
−1X2

0M1y and V ar(b2) = σ2(X2
0M1X2)

−1.
(2) To test the null hypothesis, set up the hypothesis design matrix R as:

R = (0 I) and q = 0. Hence m = Rb − q = (0 I)(b1
0 b20)0 − q = b2,

which implies V ar(m) = V ar(b2), i.e.,

σ2R(X0X)−1R0 = σ2(X2
0M1X2)

−1 ⇔ [R(X0X)−1R0]−1 = X2
0M1X2.

(3)

e∗0e∗ − e0e = σ2m0[V ar(m)]−1m

= σ2b2
0[σ2]−1X2

0M1X2b2

= b2
0X2

0M1X2b2.

Particularly, if we let b2 = c and X2 = z, we have e∗0e∗ − e0e =
c2z0Mz. Without surprise, this is the same result we get, after painful
work, for 1.(2).

(4)

F (J, n−K) =
(e∗0e∗ − e0e)/J
e0e/(n−K)

=
(b2

0X2
0M1X2b2)/J

e0e/(n−K)
.

The independence of the numerator and the denominator follows the
generalized case TM = 0, which we proved in 3.(3).

5. A List of Important Facts

Let subscript ∗ denote results from the restricted model. LetT ≡ R(X0X)−1X0,
m = Rb− q and N ≡ R(X0X)−1.

(1)

b∗ = b−N0[R(X0X)−1R0]−1m.

(2)

V ar(b∗) = V ar(b)− σ2(X0X)−1R0[R(X0X)−1R0]−1R(X0X)−1 or

V ar(b∗) = V ar(b)− σ2N0[R(X0X)−1R0]−1N.

(3)

e∗0e∗ − e0e = (b∗ − b)0X0X(b∗ − b)
= (Rb− q)0[R(X0X)−1R0]−1(Rb− q) or

e∗0e∗ − e0e = σ2m0[V ar(m)]−1m.
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(4)

F (J, n−K) =
(Rb− q)0[σ2R(X0X)−1R0]−1(Rb− q)/J

[(n−K)S2/σ2]/(n−K)

=
m0[V ar(m)]−1m/J

e0e/[σ2(n−K)]

=
(Rb− q)0[R(X0X)−1R0]−1(Rb− q)/J

e0e/(n−K)

=
(e∗0e∗ − e0e)/J
e0e/(n−K)

=
(R2 −R2∗)/J

(1−R2)/(n−K)

=
(Rb− q)0[S2R(X0X)−1R0]−1(Rb− q)

J

=
m0[S2R(X0X)−1R0]−1m

J
.
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CHAPTER 8

Functional Form, Nonlinearity, and Specification

1. Omission of Relevant Variables

(1) (PRF): y = X1β1 +X2β2 + ε v.s. (SRF): y = X1b
∗
1 + e

∗

We have

b∗1 = (X1
0X1)

−1X1
0y

= (X1
0X1)

−1X1
0(X1β1 +X2β2 + ε)

= β1 + (X1
0X1)

−1X1
0X2β2 + (X1

0X1)X1
0ε

(2) E(b∗1) = β1 + (X1
0X1)

−1X1
0X2β2

Define P1,2 = (X1
0X1)

−1X1
0X2 from X2 = X1P1,2 + w. Unless

P1.2 = 0, i.e., X1 and X2 are orthogonal, b∗1 is a biased estimator for β1.
(3) V ar(b∗1) = V ar[(X1

0X1)
−1X1

0ε] = σ2(X1
0X1)

−1.
If we use the correct SRF y = X1b1 + X2b2 + e, we would have

V ar(b1) = σ2(X1
0M2X1)

−1. It is easy to see V ar(b∗1) 6 V ar(b1), and
our conclusion is that although b∗1 is biased, it is more precise than b1
which results from using the correct SRF.

(4)

e∗1
0e∗1 = y

0M1y

= (X1β1 +X2β2 + ε)0M1(X1β1 +X2β2 + ε)

= (X2β2 + ε)0M1(X2β2 + ε)

= β2
0X2

0M1X2β2 + ε0M1ε+ 2β2
0X2

0M1ε

Hence E(e∗10e
∗
1) = β2

0X2
0M1X2β2+(n−K1)σ

2. Hence our conclusion
is : (n−K1)σ

2 is a biased estimator for e∗1
0e∗1, and we cannot find a proper

S2 to estimate σ2.
(5) As we know, restrictions reduce R2 because the minimization process be-

comes harder, i.e., R2∗ 6 R2.
Conclusions: If we omit relevant variables from the regression, our

estimators of β1 and σ2 are biased. It is possible for b∗1 to be more precise
than b1 which results from using the correct SRF, but this should be of
limited comfort since we cannot estimate σ2 consistently, and we cannot
test hypothesis about β1. Moreover, the goodness of fit is reduced.

2. Inclusion of Irrelevant Variables

(1) (PRF): y = X1β1 + ε v.s. (SRF): y = X1b1 +X2b2 + e

45
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We have

b1 = (X1
0M2X1)

−1X1
0M2y

= (X1
0M2X1)

−1X1
0M2(X1β1 + ε)

= β1 + (X1
0M2X1)

−1X1
0M2ε

(2) E(b1) = β1 and our conclusion is: b1 is an unbiased estimator for β1.
(3) V ar(b1) = V ar[(X1

0M2X1)
−1X1

0M2ε] = σ2(X1
0M2X1)

−1.
If we use the correct SRF y = X1b

∗
1 + e

∗, we would have V ar(b∗1) =
σ2(X1

0X1)
−1. It is easy to see V ar(b∗1) 6 V ar(b1), and our conclusion

is : Although b1 is unbiased, it is less precise than b∗1 which results from
using the correct SRF.

(4) Since in the true PRF, β2 = 0, it is obvious that (n−K1)σ
2 is a unbiased

estimator for e∗10e
∗
1.

(5) As we know, restrictions reduce R2, i.e., R2∗ 6 R2. We know the goodness
of fit is increased if we include irrelevant variables.

Conclusions: If we include irrelevant variables in the regression, our
estimates of both β1 and σ2 are unbiased. But we get less precise estima-
tors. We also find the goodness of fit is increased.

3. Dummy Variables

(1) Allow intercept difference only: yi = β1 + β2xi2 + β3di + εi, where di is a
dummy variable. Then yi = β1+β2xi2, when di = 0; yi = (β1+β3)+β2xi2,
when di = 1.

(2) Allow slope difference only: yi = β1 + β2xi2 + β3xi2di + εi, where di is a
dummy variable. Then yi = β1+β2xi2, when d = 0; yi = β1+(β2+β3)xi2,
when di = 1.

(3) Allow both intercept and slope difference : yi = β1 + β2xi2 + β3di +
β4xi2di + εi, where di is a dummy, and xi2di is the interaction term.
Then yi = β1 + β2xi2, when di = 0; yi = (β1 + β3) + (β2 + β4)xi2, when
di = 1.

To test whether there exists intercept difference or slope difference,
construct the following null hypothesis: H0 : β3 = 0 or H0 : β4 = 0 or
H0 : β3 = β4 = 0, and use F-test of the form:

(SSER−SSEU )/J
SSEU/(n−K) .

(4) Allow kinks to occur, i.e., a spline regression.
If we want to use dummy variables to express the following model:

income =

 α0 + β0age if age < t∗1
α1 + β1age if t∗1 6 age < t∗2
α2 + β2age if age > t∗2

Let d1 = 1 if age > t∗1; = 0 , otherwise. Let d2 = 1 if age > t∗2; = 0 ,
otherwise.

Set up the following model:
income = β1 + β2age+ δ1d1(age− t∗1) + δ2d2(age− t∗2)
(using a special interaction term for each knot.)

(5) Avoid dummy variable trap in two categories:
To analyze the models with different mean yi = µ + εi and yi =

µ+ δ + εi, we can set up dummies in two ways:
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(a) with an overall intercept and a dummy yi = µ + δdi + εi,then X =³
i1
i2

0
i2

´
;

(b) with no constant term and two dummy yi = µhi + δdi + εi,then
X =

¡
i1
0

0
i2

¢
;

(c) if we set up the model with an overall intercept and two dummies,
then we fall into the trap. yi = µ+δ1hi+δ2di+εi,where hi = 1−di,
then X =

³
i1
i2

i1
0

0
i2

´
which doesn’t have full column rank.

(6) Avoid dummy variables trap in Multi-categories.
Consider the model Ct = β1 + β2xt + εt.
There are two ways of setting up the seasonal model to avoid dummy

variable trap.
(a) include the overall constant and drop the dummy variable for the

fourth quarter Ct = β1 + β2xt + δ1Dt1 + δ2Dt2 + δ3Dt3 + εt
(b) drop the overall constant and include the fourth dummy Ct = βxt +

δ1Dt1 + δ2Dt2 + δ3Dt3 + δ4Dt4 + εt
Another example:
Consider the model: income = β1 + β2age+ ε
Suppose there are four possible categories of education level that

might affect income, namely high school, BA, MA, Ph.D. We could set up
the model in the following way: income = β1 + β2age+ δ1BA+ δ2MA+
δ3Ph.D.+ ε

(7) Test on pooling sample:

yi = α1 + α2Xi2 + ...+ αKXiK + εi, i = 1, ..., N with SSEU1

yi = δ1 + δ2Xi2 + ...+ δKXiK + εi, i = N + 1, ..., N +M with SSEU2.

(a) construct the restricted model as the following:
yi = β1+β2Xi2+...+βKXiK+ui withH0 : α1 = δ1, α2 = δ2, ..., αK =
δK
F-test:

(SSER − SSEU )/K

SSEU/(N +M − 2K) ∼ F (K,N +M − 2K),

where SSEU = SSEU1 + SSEU2.
(b) construct the restricted model as the following:

yi = β1 + β2Xi2 + ...+ βKXiK

+ h1Di + h2DiXi2 + ...+ hKDiXiK + νi

H0 : h1 = h2 = ... = hK = 0

Wald test: R = [ Ok Ik ], q = 0.

(Rb− q)0[R(X0X)−1R0]−1(Rb− q)/K
e0e/(N +M − 2K) ∼ F (K,N +M − 2K).

4. Test on Pooling Sample

(1) yi = a1 + b1X1i + e1i, i = 1, ..., n1 vs. yi = a2 + b2X2i + e2i, i = 1, ..., n2
H0 : b1 = b2
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(2) Method I: suppose two sample disturbances have the same variance.
The test statistic is

b1 − b2q
S2P

(X1i−X̄1)
2 +

S2P
(X2i−X̄2)2

∼ t(n1 + n2 − 4),

where S2 = SSE1+SSE2

n1+n2−4 .

(3) Method II: suppose two sample disturbances have different variance.
The test statistic is

b1 − b2p
Est.V ar(b1) +Est.V ar(b2)

∼ N(0, 1).



CHAPTER 9

Data Problem

1. Missing Observations on Simple Regressions

(1) Don’t attempt to fill the missing dependent variables.

(2) Simple regressions with constant y = αi+βx+ε, where y =
µ
yA
yB

¶
,x =µ

xA
xB

¶
, and xB is missing. Consider the following two approaches.

(a) Replace xB with x̄A. This is equivalent to dropping the missing
observations in that ˆ̄xB − x̄A = 0 implies no change in the sample
moments. The only thing gets worse is the R2 because of the more
number of observations.

(b) Fill xB with zeros and add a dummy variable that takes value one for
missing observations and zero for complete ones. This is algebraically
identical to simply filling the gaps with x̄A.

2. Missing Observations on Multiple Regressions

Multiple regressions with constant y = αi+βx+γz+ε, where y =
µ
yA
yB

¶
,x =µ

xA
xB

¶
, z =

µ
zA
zB

¶
, and xB is missing. Here are three approaches handling this

particular problem.
(1) Suppose that it were valid to impose a linear relationship between x and

z. Then if x = δz+ u, the model may be rewritten in three equations:

yA = αiA + βxA + γzA + εAxA

= δzA + uAyB

= αiB + (γ + βδ)zB + εB + βuB .

Each of the first two equations can be estimated by OLS. Let ˆ̄xB be
the predicted mean value of the missing xB obtained by using δ̂ and
zB. Consider combining the two data sets in one regression model as the
following,µ

yA − β̂xA
yB − β̂xB

¶
= α

µ
iA
iB

¶
+ γ

µ
zA
zB

¶
+ ν.

Assuming that ν and z are uncorrelated (at least asymptotically), γ can
be estimated by least squares. Note that although we have done nothing
to the original estimate of β, some new information is being used to esti-
mate γ in the second regression, which can be expected to provide added
efficiency.
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(2) Fill xB with zeros and add a dummy that takes value one for missing
observations and zero for complete ones. The regression model is nowµ

yA
yB

¶
= α

µ
iA
iB

¶
+ β

µ
xA
0

¶
+ γ

µ
zA
zB

¶
+ η

µ
DA

DB

¶
+

µ
εA
εB

¶
,

where DA = 0 and DB = 1. Then we have the following results

yA = αiA + βxA + γzA + εA ⇒ ȳA − α̂− γ̂z̄A = β̂x̄A

yB = αiB + γzB + ηiB + εB ⇒ η̂ = ȳB − α̂− γ̂z̄B = β̂x̄B

∴ η̂ = β̂x̄B.

(3) Fill xB with x̄A and add a dummy as defined in Approach Two. The
regression model is nowµ

yA
yB

¶
= α

µ
iA
iB

¶
+ β

µ
xA
x̄A

¶
+ γ

µ
zA
zB

¶
+ η

µ
DA

DB

¶
+

µ
εA
εB

¶
,

and we have the following results:

yA = αiA + βxA + γzA + εA ⇒
ȳA − α̂− γ̂z̄A = β̂x̄A

yB = αiB + βx̄A + γzB + ηiB + εB ⇒
η̂ = ȳB − α̂− γ̂z̄B − β̂x̄A = β̂(x̄B − x̄A).

We actually have a natural test statistic E(η̂) = 0 for whether the data
xB are missing at random.



CHAPTER 10

Generalized Least Square Model

1. Classical Model

This model is also known as a model with spherical disturbances, i.e., y =
Xβ + ε, E(ε) = 0, E(εε0) = σ2I. OLS: b = β + (X 0X)−1X 0ε. The OLS estimators
have the following properties: b is BLUE and CAN; b is also asymptotically effi-
cient assuming normally distributed disturbances; S2 = e0e/(n−K) is an unbiased
estimator for σ2.

2. Generalized Model

Here is a generalized model with non-spherical disturbances, y = Xβ+ε, E(ε) =
0, E(εε0) = σ2Ω.Recall that the OLS procedure minimizes (equally weighted) sum
of squared errors. The GLS procedure is utilized in presence of heteroskedasticity
or auto-correlation, by using a different weighting scheme for the weighted sum
of squared errors. In particular, the errors that are known to have large variance
themselves are assigned with a smaller weight, so are the errors that are known to
have large covariance with other errors.

If we still use OLS estimator, then b = β + (X 0X)−1X 0ε implies the follow-
ing properties: b is still unbiased and CAN; b is no longer efficient even if the
disturbances are normally distributed; S2 = e0e/(n−K) may be biased for σ2.

The conventional estimated variances of OLS estimates are no longer unbiased
due to the nature of heteroskedasticity or auto-correlation, and the extent of bi-
asness (upward or downward) varies in different applications. Therefore, we can’t
draw proper inference based on OLS estimators.

If the disturbances are normally distributed, the OLS estimates are not the
same as MLE, but the GLS estimates coincides with MLE. Despite the superi-
ority of GLS over OLS in this particular context, the implementation of GLS
requires advance knowledge about the variance structure of the disturbances, a
rare case in reality. So people developed FGLS that uses the estimated covari-
ance matrix of errors from the OLS, and others simply use the "White-washed",
or heteroskedasticity-corrected, variance for the OLS estimates. One alternative
version of heteroskedasticity-corrected variance, known as Newey-West correction,
is also very popular.

Because the covariance matrix of the disturbance term is often large, it’s compu-
tationally hard to find FGLS estimators. An easier way will be to perform an OLS
on transformed data that make the errors spherical. In the case of heteroskedas-
ticity, the transformation is to divide all the data (including the constant term) by
the square root of the respective error variance. It’s demonstrated that the OLS
on the post-transformed data is equivalent to the GLS on the original data.
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We typically use the Durbin-Waston statistic to detect the auto-correlation in
the regression errors, whereas a D-W value of 2 indicates no auto-correlation. If
the null hypothesis of zero (first-order) auto-correlation is rejected, then we can
use an estimated ρ̂ to transform the data as follows: replace all the data xt with
xt−ρ̂xt−1 for t ≥ 2 and replace x1 with

p
1− ρ̂2x1. The OLS estimates on the post-

transformed data boils down to the FGLS estimates for the original specification.
Be cautions of the source of auto-correlation though, as a mis-specfied model (say,
omitting a relevant explanatory variable) can lead to auto-correlation.

(1) Finite Sample properties of b in GLR model
(a) E(b) = EX [E(b|X)] = β

If regressors and disturbances are uncorrelated, LS estimator is still
unbiased in GLR model.

(b)

V ar(b|X) = E[(b− β)(b− β)0|X]
= σ2(X 0X)−1(X 0ΩX)(X 0X)−1

=
σ2

n

µ
X 0X
n

¶−1µ
X 0ΩX

n

¶µ
X 0X
n

¶−1
If the disturbances are normally distributed,

b ∼ N [β, σ2(X 0X)−1(X 0ΩX)(X 0X)−1].

(2) Asymptotic properties of b in GLR model
(a) Consistency

We have E(b) = β, and V ar(b) = σ2

n

³
X0X
n

´−1 ³
X0ΩX
n

´³
X0X
n

´−1
.

If p limV ar(b) = 0, according to the definition of convergence in

mean square, then we have p lim b = β. Therefore, if p lim
³
X0X
n

´
and p lim

³
X0ΩX
n

´
are both finite positive definite matrices, then b is

consistent for β, i.e., p lim b = β.
(b) Asymptotic normal distribution

β̂LS = β + (X 0X)−1X 0ε

= β + (X 0X/n)−1(X 0ε/n)⇒
√
n(β̂LS − β) = (X 0X/n)−1(X 0ε/

√
n)

Let p lim
³
X0X
n

´
= Q. If ε ∼ N(0, σ2I), then recall 6.25 and we

get X 0ε/
√
n

d→N(0, σ2Q) ⇒ √n(β̂LS − β) = Q−1(X 0ε/
√
n)

d→N [0,

Q−1(σ2Q)Q−1] = N(0, σ2Q−1) i.e., β̂LS
a→N [β, σ2Q−1/n].

Note that we estimate Q−1/n with (X 0X)−1 and σ2with e0e/(n−K).
If ε ∼N(0, σ2Ω), similarly we getX 0ε/

√
n

d−→ N
h
0, σ2

h
p lim

³
X0ΩX
n

´ii
⇒√n(β̂LS−β) = Q−1(X 0ε/

√
n)

d−→ N [0, σ2Q−1p lim(X 0ΩX/n))Q−1]
i.e., β̂LS

a−→ N [β, (σ2/n)Q−1p lim(X 0ΩX/n)Q−1].
(c) Conclusions:

(i) In the heteroskedastic case, if the variances of disturbances are
finite and not dominated by any single term, then the least
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squares estimator is asymptotically normally distributed with
covariance matrix:

Asy.V ar(b) = (σ2/n)Q−1p lim(X 0ΩX/n)Q−1;

(ii) In case that Ω is known,

Est.V ar(b) =
1

n
·
µ
X 0X
n

¶−1
·
µ
X 0σ2ΩX

n

¶
·
µ
X 0X
n

¶−1
;

(iii) In case that Ω is unknown, using White heteroskedasticity con-
sistent estimator:

Est.Asy.V ar(b) =
1

n
·
µ
X 0X
n

¶−1
·
µP

e2ixix
0
i

n

¶
·
µ
X 0X
n

¶−1
= n(X 0X)−1S0(X 0X)−1.

(iv) Without specifying the distribution of disturbances, we cannot
use F statistic, and the likelihood ratio and Lagrangian Mul-
tiplier tests are also not available. However, we can use the
Wald statistic as well as asymptotic “t-ratio”.

(3) Efficient estimation when Ω is a known, symmetric, positive definite ma-
trix: y = Xβ + ε,where ε ∼ (0, σ2Ω).

Define PP 0 ≡ Ω−1, then we have P 0ΩP = I.
Pre-multiply y = Xβ + ε by P 0, we have P 0y = P 0Xβ + P 0ε, i.e.,

y∗ = X∗β + ε∗.
From E(ε∗ε∗0) = E(P 0εε0P ) = σ2P 0ΩP = σ2I, we know y∗ = X∗β +

ε∗is the classical model, where ε∗ ∼ (0, σ2I).
According to the OLS rules, we have

b∗ = (X∗0X∗)−1X∗0y∗

= (X 0PP 0X)−1X 0PP 0y

= (X 0Ω−1X)−1X 0Ω−1y,

E(b∗) = β,

V ar(b∗) = σ2(X 0Ω−1X)−1.

Hence we have

β̂GLS = b∗ = (X 0Ω−1X)−1X 0Ω−1y,

E(β̂GLS) = E(b∗) = β,

V ar(β̂GLS) = V ar(b∗) = σ2(X 0Ω−1X)−1,

σ̂2GLS = (y
∗ −X∗b∗)0(y∗ −X∗b∗)/(n−K)

= (y −Xβ̂GLS)
0Ω−1(y −Xβ̂GLS)/(n−K),

E(σ̂2GLS) = σ2.
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For the sake of comparison, we list the following OLS results:

β̂OLS = (X
0X)−1X 0y,

E(β̂OLS) = β,

V ar(β̂OLS) = σ2(X 0X)−1(X 0ΩX)(X 0X)−1,

σ̂2OLS = (y −Xβ̂OLS)
0(y −Xβ̂OLS)/(n−K).

(4) Properties of β̂GLS inherited from b∗:
(a) b∗ is unbiased, thus β̂GLS is also unbiased;
(b) b∗ is consistent as long as p limX∗0X∗/n = Q∗ is a finite and posi-

tive definite matrix; β̂GLS is consistent as long as p limX∗0X∗/n =
p limX 0Ω−1X/n = Q∗ is finite and positive definite.

(c) b∗ is asymptotically normally distributed , with mean β and variance
σ2(X∗0X∗)−1; β̂GLS is asymptotically normally distributed , with
mean β and variance σ2(X 0Ω−1X)−1.

(d) b∗ is MVLUE by Gauss-Markov theorem; β̂GLS is MVLUE by ex-
tended Gauss-Markov theorem.

(e) Testing H0 : Rβ = q, we use the following F test.

F (J, n−K) = (Rb∗ − q)0[S∗2R(X∗0X∗)−1R0]−1(Rb∗ − q)/J

= (Rβ̂GLS − q)0[S∗2R(X 0Ω−1X)−1R0]−1(Rβ̂GLS − q)/J

=
(e∗c

0e∗c − e∗0e∗)/J
e∗0e∗/(n−K)

=
(Rβ̂GLS − q)0[σ2R(X 0Ω−1X)−1R0]−1(Rβ̂GLS − q)/J

S∗2/σ2

S∗2 = e∗0e∗/(n−K)

= (y∗ −X∗b∗)0(y∗ −X∗b∗)/(n−K)

= (y −Xβ̂GLS)
0Ω−1(y − β̂GLS)/(n−K)

b∗c = b∗ − (X∗0X∗)−1R0[R(X∗0X∗)−1R0]−1(Rb∗ − q)

= b∗ − (X 0Ω−1X)−1R0[R(X 0Ω−1X)−1R0]−1(Rβ̂GLS − q)

(5) Assuming normality, i.e., ε ∼ N(0, σ2Ω), then we have the following MLE:
β̂ML = β̂GLS = b∗ = (X 0Ω−1X)−1X 0Ω−1y,

E(β̂ML) = E(β̂GLS) = E(b∗) = β,

V ar(β̂ML) = V ar(β̂GLS) = V ar(b∗) = σ2(X 0Ω−1X)−1,

σ̂2ML = (y −Xβ̂ML)
0Ω−1(y −Xβ̂ML)/n.

Again, we find that both β̂ML and β̂GLS are unbiased and efficient. σ̂2MLis
biased and σ̂2GLS is unbiased.

(6) Estimation when Ω is unknown.
(a) Overall idea:
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(i) when Ω is unknown, β̂GLS = (X 0Ω−1X)−1X 0Ω−1y is not fea-
sible. Hence we need a good enough estimator Ω̂ for Ω. If we
plug Ω̂ into β̂GLS , we get β̂FGLS = (X 0Ω̂−1X)−1X 0Ω̂−1y.

(ii) Suppose we know the structure of Ω is Ω = Ω(θ). If θ̂ is a
consistent estimator for θ, then by Slutsky theorem, we know
Ω̂ = Ω(θ̂) is consistent for Ω(θ), and we say Ω̂ is good enough.

(iii) Moreover, for β̂FGLS to be asymptotically equivalent to β̂GLS
so that β̂FGLS have all desired properties that β̂GLS inher-
ited from b∗LS , there are certain conditions to be satisfied:
p lim(X

0Ω̂−1X
n − X0Ω−1X

n ) = 0 and p lim(X
0Ω̂−1ε√
n
− X0Ω−1ε√

n
) = 0.

Of course, we don’t need to worry about those conditions so
far.

(iv) An important theorem: for β̂FGLS to be asymptotically effi-
cient, we don’t need to have an efficient estimator of θ, and
only a consistent one is required to achieve full efficiency for
β̂FGLS .

(b) As long as the information matrix is block diagonal, the GLS, FGLS
and ML estimators of β have the same asymptotically distribution.
Particularly, Asy.V ar(β̂ML) = σ2(X 0Ω−1X)−1.

(c) For the case of group-wise heteroskedasticity, to get the β̂MLE , follow
the following steps:
Step 1: get OLS estimator b for the pooling data;
Step 2: get ML estimator σ̂2g for each group using σ̂

2
g = e0geg/n, and

eg = yg −Xgb;
Step 3: get ML estimator β̂ML using

β̂ML =

"
GX
g=1

1

σ̂2g
XgX

0
g

#−1 " GX
g=1

1

σ̂2g
Xgyg

#
;

Step 4: if β̂ML has not yet converged, go to step 2 while substituting
b with β̂ML; otherwise, exit.
Notes for step 3: Refer back to 9.3 about grouped data:

b∗ = (x̄∗0x̄∗)−1(x̄∗0ȳ∗) =

"
GX
g=1

ngx̄gx̄
0
g

#−1 " GX
g=1

ngx̄gȳg

#
,

where x̄g, ȳg are the grouped data mean. Since σ2g = σ2/ng (suppose
σ2 is the variance of disturbances for the ungrouped data), we use√
ng as weight to get [

√
ngσg]

2 = σ2.
Here we have ng = σ2/σ2g , x̄g = Xg, ȳg = yg, since σ2 will be
cancelled out, we can equally well normalize it to 1.

3. Heteroskedasticity

(1) For a heteroskedasticity model with σ2i = σ2ωi, we let Pii be 1/
√
ωi so

that [σi/
√
ωi]

2 = σ2.
(2) OLS estimator for heteroskedasticity model

(a) Asy.V ar(b) = σ2

n

h
p lim

³
X0X
n

´i−1
p lim

³
X0ΩX
n

´ h
p lim

³
X0X
n

´i−1
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Assuming p lim(X 0X/n) = Q, p lim(X 0ΩX/n) = p lim( 1n

nP
i=1

ωixixi
0)

= Q∗, we have b
a→N [β, σ2

n Q−1Q∗Q−1] and

Est.Asy.V ar(b) = (X 0X)−1(σ2
nX
i=1

ωixix
0
i)(X

0X)−1.

(b)

V ar(b) = σ2(X 0X)−1(X 0ΩX)(X 0X)−1;

V ar(β̂GLS) = σ2(X 0Ω−1X)−1.

b is less efficient than β̂GLS .
(c) If the heteroskedasticity is not correlated with the variables in the

model, then at least in large samples, it is tolerable, although not
optimal, to use Est.V ar(b) = S2(X 0X)−1 to estimate V ar(b) =
σ2(X 0X)−1(X 0ΩX)(X 0X)−1.

(d) One of the appropriate way of estimating Var(b) for OLS is White
estimator:

V ar(b) = σ2(X 0X)−1(X 0ΩX)(X 0X)−1.
1

n
σ2X 0ΩX

=
1

n

nX
i=1

σ2i xix
0
i.

Define S0 = 1
n

nP
i=1

e2ixix
0
i, where ei is the i

th least squares residual .

Est.V ar(b) = n(X 0X)−1S0(X 0X)−1.
(3) Testing for group-wise heteroskedasticity

H0 : σ
2
1 = ... = σ2G(G− 1 restrictions)

Statistic: n lnS2 −
GP
g=1

ng lnS
2
g ∼ χ2(G− 1), where S2 = e0e/n,

S2g = e0geg/ng are from grouped data.
(4) GLS when Ω is known

(a) For the case of V ar(εi) = σ2i = σ2ωi, let Pii be 1/
√
ωi so that

V ar(εi/
√
ωi) = σ2. Or equivalently, diag(Ω) = ( ω1 ω2 ... ωn )

⇒ diag(Ω−1) = (1/ ω1 1/ω2 ... 1/ωn )

⇒ diag(P ) = ( 1/
√
ω1 1/

√
ω2 ... 1/

√
ωn ),

P 0yi = yi/
√
ωi, P 0xi = xi/

√
ωi, P 0εi = εi/

√
ωi.

According to the formula of β̂GLS for group-wise model, we have

β̂GLS = [(P
0X)0(P 0X)]−1[(P 0X)0(P 0y)]

=

Ã
nX
i=1

xix
0
i/ωi

!Ã
nX
i=1

xiyi/ωi

!

=

Ã
nX
i=1

wixix
0
i

!Ã
nX
i=1

wixiyi

!
where wi = 1/ωi = P 2ii.
We also name it as weighted least squares estimator.
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Note: Observations with smaller variance receive a larger weight in
the computation of the sums and therefore have greater influence in
the estimates obtained.

(b) In the case of V ar(εi) = σ2i = σ2x2k, let Pii be 1/xk so that
V ar(εi/xk) = σ2. We have weights wi = 1/x

2
k for WLS.

(c) In the case of V ar(εi) = σ2i = σ2xk, let Piibe 1/
√
xk so that

V ar(εi/
√
xk) = σ2. We have weights wi = 1/xkfor WLS.

(d) The weighted least square estimator

β̂WLS =

Ã
nX
i=1

wixix
0
i

!Ã
nX
i=1

wixiyi

!
is consistent regardless of the weights used, as long as the weights are
uncorrelated with the disturbances, but improperly weighted least
squares estimator is inefficient.

4. Autocorrelated Disturbances

(1) White noise εt satisfies: zero mean, constant variance and zero covari-
ance between any two disturbances in different periods. This is also the
definition of covariance stationary or weakly stationary.

(2) Suppose disturbances are homoskedastic, but correlated across observa-
tions, then E(εε0) = σ2Ω, where σ2Ω is a full rank, positive definite matrix
with a constant σ2 on the diagonal.

Impose stationarity further, i.e., Ωts is a function of |s− t|, but not
of t or s alone.

Auto-covariances: γs = Cov(εt, εt−s) = Cov(εt+s, εt), particularly,
γ0 = σ2.

Auto-correlation: ρs = γs/γ0 = Cov(εt, εt−s)/
p
V ar(εt)V ar(εt−s),

particularly, ρ0 = 1.
(3) Stationary AR(1) Process: εt = ρεt−1 + ut, where |ρ| < 1, and ut is

classical.
Then E(εt) = 0, σ2ε = σ2u/(1− ρ2), γs = ρsσ2u/(1− ρ2), (particularly,

γ0 = σ2ε), ρs = ρs.

Thus we have σ2εΩ =
σ2u
1−ρ2


1 ρ · · · ρT−1

ρ 1 · · · ρT−2

· · · · · · · · · · · ·
ρT−1 ρT−2 · · · 1

.
(4) OLS estimators

If the regression doesn’t contain lagged dependent variable, then OLS
estimators are unbiased, consistent, asymptotically normally distributed,
and inefficient;

If the regression contains lagged dependent variable, then OLS esti-
mators are no longer unbiased or consistent.

(5) GLS estimators (Φ = σ2Ωis known.)

β̂GLS = [X
0Φ−1X]−1[X 0Φ−1y],

V ar(β̂GLS) = [X
0Φ−1X]−1.
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For AR(1), P 0 =


p
1− ρ2 0 · · · 0
−ρ 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

, then V ar(P 0ε) = σ2u, and

PP 0 = Φ−1, P 0ΦP = I.
Note that this transformation matrix is called Prais-Winston one. If

we drop the first row, then the transformation is called Cochrane-Orcutt
one.

(6) FGLS estimators (Φ = σ2Ωis unknown.)

β̂FGLS = [X
0Φ̂−1X]−1[X 0Φ̂−1y],

V ar(β̂FGLS) = [X
0Φ̂−1X]−1.

For AR(1), follow the steps:
Step 1: regress y = Xβ + ε and get e;
Step 2 regress et = ρet−1 + ut and get ρ̂;
Step 3: Φ̂ = Φ(ρ = ρ̂);
Step 4: plug Φ̂into the formula.

(7) Durbin-Watson Test
For regression satisfying : (1) with a constant term; (2) without lagged

dependent variables.
Statistic:

d =

TP
t=2
(et − et−1)2

TP
t=1

e2t

= 2(1− r1)−(e
2
1 + e2T )
TP
t=1

e2t

≈ 2(1− r1),

where et are the residuals from the original regression, and

r1 =

TP
t=2

etet−1

TP
t=2

e2t

,

i.e., r1 = ρ̂ for et = ρet−1 + ut.
Decision rule:
For testing positive autocorrelation, reject H0 : ρ = 0 if d < dL;

accept H0 : ρ = 0if d > dU ; inconclusive if dL < d < dU .
For testing negative autocorrelation, reject H0 : ρ = 0 if d > 4− dL;

accept H0 : ρ = 0 if d < 4− dU ; inconclusive if 4− dU < d < 4− dL.
(8) Durbin-H test:

For regression Yt = β1Yt−1 + β2Xt + εt, statistic:

h = r1

r
T
.
(1− T · V̂ (β̂1)) a→N(0, 1),

where T is the number of observations, and V̂ (β̂1) is the estimated variance
of the coefficient on Yt−1.



CHAPTER 11

Models for Panel Data

1. Panel Data Models

The major advantage of using panel data rather than cross sectional data is
that panel data provides us with great flexibility discussing different behavior across
individual. The conventional panel data model is: yit = αi+ β0xit+ εit. Note that
constant is not part of the K regressors in xit. When αi is considered stationary
across time and fixed within group i, the model is called fixed effect panel data
model ; when αi is considered a group specific disturbance, the model is called
random effect panel data model.

2. Fixed Effects

(1) The regression model takes the form
y1
y2
...
yn

 =

i 0 · · · 0
0 i · · · 0

0 0
. . . 0

0 0 · · · i

α+

X1

X2

...
Xn

β +


ε1
ε2
...
εn


or y = Dα +Xβ + ε. Suppose that we have Ti observations in the ith

group. We can run a regular least square regression on this equation to get
the estimators. However, under normal circumstances, we would have way
too many dummy variables to handle, and we take the partial regression
approach.

(2) Note that b = (X0MDX)
−1(X0MDy), where MD = I −D(D0D)−1D0.

This is equivalent to run a regression fromMDy ontoMDX. Note further
that MD has the following nice feature,

MD =


M0

T1
0 · · · 0

0 M0
T2

· · · 0

0 0
. . . 0

0 0 · · · M0
Tn

 ,
where M0

Ti
= ITi − i(i0i)−1i0 = ITi − 1

Ti
ii0. It is obvious that M0

Ti
Xi =

Xi − X̄ii and M0
Ti
yi = yi − ȳii. Hence we could get b from a regression

using pooling sample deviations from their respective group means, i.e.,
y1 − ȳ1i
y2 − ȳ2i

...
yn − ȳni

 =

X1 − X̄1i
X2 − X̄2i

...
Xn − X̄ni

b+

e1
e2
...
en

 .
59
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Similarly, we have a = (D0D)−1D0(y −Xb).
(3) Est.V ar(b) = S2(X0MDX)

−1 and Est.V ar(ai) =
1
Ti
S2 + X̄iV ar(b)X̄i

0.

S2 =
Pn

i=1 ei
0eiPn

i=1 Ti−K−n .(Note the correction of degrees of freedom for n ai’s.

R2 = 1−
Pn

i=1 ei
0eiPn

i=1 yi
0M0

Ti
yi
.

(4) H0 : αi = 0 ∀i We have αi√
Est.V ar(αi)

∼ t(
Pn

i=1 Ti −K − n), but this is

not a useful hypothesis to test. H0 : a1 = a2 = ... = an(n−1 restrictions)
We have (R2−R2

∗)/(n−1)
(1−R2)/(

Pn
i=1 Ti−n−K) ∼ F (n − 1,Pn

i=1 Ti − n −K). Note that
under the null, we use the pooling sample data to get the efficient estima-
tors and R2∗. Note further that in the unrestricted model we could have
estimated the model with an overall constant and n−1 dummy variables.
But this alternative method will produce the same results except that
the interpretation for coefficients associated with the dummies would be
different.

(5) Comparison on three alternative models
(a) Overall Model (OA): yit = αi + β0xit + εit

Within-group Model (WG): yit − ȳi· = β0(xit − x̄i·) + εit − ε̄i·
Between-group Model (BG): ȳi· = αi + β0x̄i· + ε̄i·

(b) Sample moments
Corresponding to three models, we have the sample moments as the
following:

SOAXX =
Xn

i=1

XTi

t=1
(xit − ¯̄x)(xit − ¯̄x)0;

SOAXy =
Xn

i=1

XTi

t=1
(xit − ¯̄x)(yit − ¯̄y);

SWG
XX =

Xn

i=1

XTi

t=1
(xit − x̄i·)(xit − x̄i·)0 =

Xn

i
Xi

0M0
TiXi;

SWG
Xy =

Xn

i=1

XTi

t=1
(xit − x̄i·)(yit − ȳi·) =

Xn

i
Xi

0M0
Tiyi;

SBGXX =
Xn

i=1

XTi

t=1
(x̄i· − ¯̄x)(x̄i· − ¯̄x)0;

SBGXy =
Xn

i=1

XTi

t=1
(x̄i· − ¯̄x)(ȳi· − ¯̄y).

Interrelationships:
SOAXX = S

WG
XX + S

BG
XXand S

OA
Xy = S

WG
Xy + S

BG
Xy .

(c) Estimators: In terms of estimators for β, we have

bOA = (SOAXX)
−1SOAXy , b

WG = (SWG
XX )

−1SWG
Xy , and bBG = (SBGXX)

−1SBGXy .

Interrelaionships:

bOA = FWGbWG +FBGbBG, where FWG = (SWG
XX + S

BG
XX)

−1SWG
XX = I−FBG.

3. Random Effects

The regression model takes the form yit = α + β0xit + ui + εit, where ui and
εit are independent disturbances with zero mean and variances σ2u and σ2ε . It is
further assumed that there is no autocorrelation inside ε.

Consider the combined disturbance ηit = ui + εit, we have Ωi = E(ηη0) =
σ2uii

0 + σ2εI and
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Σ =


Ω1 0

... 0

0 Ω2
... 0

0 0
. . . 0

0 0
... Ωn

 .

4. Preparation for Factor Analysis

(1) Multivariate normal density
Let Y ∼ N(µY ,ΣY Y ) with YN×K , then the individual likelihood is

f(Yi|µYi ,ΣY Y ) = 1

(2π)
K
2 |ΣY Y |

1
2

exp[−12(Yi − µYi)
0Σ−1Y Y (Yi − µYi)],

and the sample log-likelihood is

lnL = c− N
2 ln |ΣY Y |− 1

2

XN

i=1
(Yi − µYi)

0Σ−1Y Y (Yi − µYi)

= c− N
2 ln |ΣY Y |− N

2 tr[Σ
−1
Y Y ŜY Y ],

which is the so-called “Wishart covariance structure.”
Note that the representation of sample log-likelihood is valid only if

ΣY Y is the same for all Yi’s. If we do allow difference across Yi’s, then
we need use the MVN density function. For example, the MVN density
function for the model yi = Xiβ + ui, or Y = (y1

0, ...,yN 0)0, is

f(yi|0,ΣY Y ) = 1

(2π)
K
2 |ΣY Y |

1
2

exp[−12yi0Σ−1Y Y yi]

= 1

(2π)

Kyi

2 |Σuu|
1
2

exp[−12 (yi −Xiβ)
0Σ−1uu (yi −Xiβ)](

1

(2π)
KX

2 |ΣXX |
1
2

exp[−12Xi
0Σ−1XXXi]

)
.

Note that the part before the curly bracket is the sufficient statistic for
the density function, and in practice we maximize the sample likelihood
using only the sufficient statistic part. That is,

lnL = c− N
2 lnΣuu − 1

2 tr[Σ
−1
uu Ŝuu].

(2) A single equation system
Assume y = β0x + u. Let’s set up the model in terms of Y, where

Y = (y0 x0)0, as the following, Y =
³
β0x+u
x

´
. The parameter vector is

θ = (β Σxx Σuu). Clearly we have the following system of equations
Σ̂(θ) = SY Y , where

Σ(θ) =

·
β0Σxxβ + Σuu β0Σxx
Σxxβ Σxx

¸
, and SY Y =

·
Syy Syx
Sxy Sxx

¸
.

We have an exactly identified system, one solution of which is:

Σ̂xx = Sxx, β̂ = S
−1
xxSxy, Σ̂uu = Syy − Sxy 0S−1xxSxy.

Note that we stack x below y in constructing Y because we need the
estimators for β. In the sections below where we consider only the variance
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component, we won’t stack x below y again since there is no need to
estimate β.

(3) A simple variance component
Assume yit = δi + uit, t = 1, ..., T with δi ∼ N(0, σ2δ) and uit ∼

i.i.d. N(0, σ2u). In matrix notation, the T equation system is yi = δii+ui.
The parameter vector is θ = (σ2δ σ2u), and we hypothesize that T = 2 is
enough to identify both parameters.

When T = 2, we have the following system of equations, Σ̂(θ) = Syy,
where

Σ(θ) = σ2δ iT iT
0 + σ2uIT =

·
σ2δ + σ2u σ2δ
σ2δ σ2δ + σ2u

¸
.

In this case, we have an identified system, one solution of which is σ̂2δ =
S21, σ̂

2
u = S11−S21. The sample likelihood for individual i can be written

as one of following two representations:

Li = 1

(2π)
2
2 |Σyy|

1
2

exp(−12y0Σyyy)

=

Z
δi

1√
2πσδ

exp[−12( δ
σδ
)2]
YT

t=1

1√
2πσu

exp[−12(yit−δiσu
)2]dδi.

(4) Variance component plus AR(1)
The model is yit = δi + uit, t = 1, ..., T , uit = γuit−1 + ηit, with

δi ∼ N(0, σ2δ ) and ηit ∼ i.i.d. N(0, σ2η). In matrix notation, the T equation
system is yi = δii + ui. The parameter vector is θ = (γ σ2δ σ2η) and we
hypothesis that T = 3 is enough to identify θ.

Apparently, we have V ar(uit) =
σ2η
1−γ2 and the correlation matrix for

ui is

A =

 1 γ γ2

γ 1 γ
γ2 γ 1

 .
We also have

Σ(θ) = σ2δ iT iT
0 + σ2η

1−γ2A

=


σ2δ +

σ2η
1−γ2 σ2δ + γ

σ2η
1−γ2 σ2δ + γ2

σ2η
1−γ2

σ2δ + γ
σ2η
1−γ2 σ2δ +

σ2η
1−γ2 σ2δ + γ

σ2η
1−γ2

σ2δ + γ2
σ2η
1−γ2 σ2δ + γ

σ2η
1−γ2 σ2δ +

σ2η
1−γ2

 .
Σ̂(θ) = SY Y implies that we have an identified system, one solution of
which is:

γ̂ = S31−S11
S21−S11 − 1, σ̂2η = (S11 − S21)(1 + γ̂), σ̂2δ = S11 − σ̂2η

1−γ̂2 .

(5) Variance component plus MA(1)
The model is yit = δi + uit, t = 1, ..., T , uit = ηit − γηit−1, with

δi ∼ N(0, σ2δ ) and ηit ∼ i.i.d. N(0, σ2η). In matrix notation, the T equation
system is yi = δii + ui. The parameter vector is θ = (γ σ2δ σ2η) and we
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hypothesis that T = 3 is enough to identify θ. Apparently, we have

V ar(uit) =
σ2η
1+γ2 and the correlation matrix for ui is

A =

 1 −γ 0
−γ 1 −γ
0 −γ 1

 .
We also have

Σ(θ) = σ2δ iT iT
0 + (1 + γ2)A

=

 σ2δ + (1 + γ2)σ2η σ2δ − γσ2η σ2δ
σ2δ − γσ2η σ2δ + (1 + γ2)σ2η σ2δ − γσ2η
σ2δ σ2δ − γσ2η σ2δ + (1 + γ2)σ2η

 .
Σ̂(θ) = SY Y implies that we have an identified system.

5. Regression Based Factor Analysis

(1) Model with K indicators λk and one factor δ
The model is yik = λkδi + uik, with δi ∼ N(0, σ2δ) and ui ∼ N(0,Ω),

where Ω is a diagonal covariance matrix for ui with heterogeneity. In
matrix notation, the K equation system is yi = λδi+ui. Let’s normalize
λ1 = 1 and consider the case where K = 3. The parameter vector is
θ = (λ2 λ3 σ

2
δ σ

2
u1 σ

2
u2 σ

2
u3).

We also have

Σ(θ) = σ2δλλ
0 +Ω =

 σ2δ + σ2u1 1 · λ2σ2δ 1 · λ3σ2δ
1 · λ2σ2δ σ2δ + σ2u2 λ2λ3σ

2
δ

1 · λ3σ2δ λ2λ3σ
2
δ σ2δ + σ2u3

 .
Σ̂(θ) = SY Y implies that we have an identified system, one solution of
which is: λ̂2 = S32

S31
, λ̂3 =

S32
S21

, σ̂2δ =
S31S21
S32

, σ̂2u1 = S11 − σ̂2δ , σ̂
2
u2 = S22 −

λ̂22σ̂
2
δ , σ̂

2
u3 = S33 − λ̂23σ̂

2
δ .

(2) Multiple indicator multiple cause (MIMC) model with K indicators λk
and one factor F with L regressors X.

The model is yik = λkFi + uik and Fi = β0xi + δi, with δi ∼ N(0, σ2δ)
and ui ∼ N(0,Ω), where Ω is a diagonal covariance matrix for ui with
heterogeneity. Note that xi is of L-dimension. The model above can
be rewritten as yik = λkβ

0xi + λkδi + uik, or in matrix notation, yi =
λβ0xi + λδi + ui. Let’s normalize λ1 = 1 and consider the case when
K = 3. The parameter vector is θ = (λ2 λ3 σ2δ σ

2
u1 σ

2
u2 σ

2
u3).

If we define σ2F ≡ β0Σxxβ + σ2u, we also have

Σ(θ) = λβ0Σxxβλ0 + λσ2uλ
0 +Ω

= λσ2Fλ
0 +Ω

=

 σ2F + σ2u1 1 · λ2σ2δ 1 · λ3σ2δ
1 · λ2σ2δ σ2F + σ2u2 λ2λ3σ

2
δ

1 · λ3σ2δ λ2λ3σ
2
δ σ2F + σ2u3

 .
Σ̂(θ) = SY Y implies that we have an identified system.





CHAPTER 12

Simultaneous Equations Models

1. Simultaneous Equations Model with a Single Observation

(1) Original Model
Byt + Γxt = εt where

B =


β11 β12 · · · β1G
β21 β22 · · · β2G
· · · · · · · · · · · ·
βG1 βG2 · · · βGG

 ,Γ =


γ11 γ12 · · · γ1K
γ21 γ22 · · · γ2K
· · · · · · · · · · · ·
γG1 γG2 · · · γGK

 ,

yt =


y1t
y2t
. . .
yGt

 , xt =


x1t
x2t
. . .
xGt

 ,

with

E(εgt) = 0,

E(εgtεgs) = 0 for t 6= s,

E(ε2gt) = σgg,

E(εgtεht) = σgh for g, h = 1, ..., G.

E(εtε
0
t) =

X
=


σ11 σ12 · · · σ1G
σ21 σ22 · · · σ2G
· · · · · · · · · · · ·
σG1 σG2 · · · σGG

 .

(2) Reduced Form

Byt + Γxt = εt ⇒ yt = −B−1Γxt +B−1εt ⇒ yt = Πxt + vt, where

Π = −B−1Γ,
vt = B−1εt,

Π =


π11 π12 · · · π1G
π21 π22 · · · π2G
· · · · · · · · · · · ·
πG1 πG2 · · · πGG

 ,

E(vtv
0
t) = B−1

X
(B−1)0 = Ω.

65
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2. Simultaneous Equations Model of Full Observations

(1) Original Model: BY + ΓX = ε
(2) Reduced Form: BY+ΓX = ε⇒ Y = −B−1ΓX+B−1ε⇒ Y = ΠX+V

where Π = −B−1Γ and Π are the same as that in the SEM of a single
observation, V = B−1ε. p lim

³
X0X
T

´
= Q, p lim

³
X0ε
T

´
= 0, p lim

³
ε0ε
T

´
=P

and p lim
³
V0V
T

´
= B−10ΣB−1 = Ω, p lim

³
X0V
T

´
= 0.

3. Identification Conditions

(1) Order Condition (Necessary Condition)
Let R be the number of restrictions within the considered equation,

the order condition is R > G−1, since we normalize one of the coefficients
associated with endogenous variables to be -1.

(2) Rank Condition (Necessary and Sufficient Condition)
Given a considered equation, find the restricted parameters within

that equation, select all columns containing those restricted parameters
and form a matrix, the rank of this matrix should be equal to G− 1.

4. Example #1

y1t y2t y3t z1t z2t z3t
Eq. 1 −1 β12 β13 γ11 γ12 γ13
Eq. 2 β21 −1 0 γ21 0 γ23
Eq. 3 β31 0 −1 0 γ32 0

For Eq. 1: R = 0, G− 1 = 2 It fails the order condition, thus is not identified.
For Eq. 2: R = 2, G− 1 = 2 It passes the order condition. The selected matrix

is  β13
0
−1

γ12
0
γ32

 ,

which has rank 2, then it also passes the rank condition. Thus Eq. 2 is just
identified.

For Eq. 3: R = 3, G− 1 = 2 It passes the order condition. The selected matrix
is  β12 γ11 γ13

−1 γ21 γ23
0 0 0

 ,

which has rank 2, then it also passes the rank condition. Thus Eq. 3 is potentially
over identified by 1.

5. Johnston’s Approach

Π = −B−1Γimplies BΠ+ Γ = 0, i.e., ¡ B Γ
¢µ Π

I

¶
= 0.

Let A ≡ ¡ B Γ
¢
,W ≡

µ
Π
I

¶
, then AW = 0.

Design Φi as (G + K) × R to represent the restrictions imposed on the ith

equation. (Not like the design matrix R in Chapter 6, where we have one row for
each restriction, here we set one column for each restriction.)
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Let αi be the ith row of A, then the ith equation implies αi
¡
Φi W

¢
=¡

OR OK

¢
, where αiΦi = OR are the set of R restrictions, andαiW = OK

are K equations coming from AW = 0. In αi, the parameter associated with the
normalized endogenous variable is set to be —1. We have R + K equations and
G+K − 1 unknowns.

Order condition is G+K − 1 6 R+K, i.e., R > G− 1.
Rank condition is Rank

¡
Φi W

¢
= G+K − 1 or Rank (AΦi) = G− 1.

[Essentially, AΦi is the selected matrix in 3.(2)]

6. Kmenta’s Approach

BΠ + Γ = 0 ⇒ ¡
β11 β12 · · · β1G

¢
Π = − ¡ γ11 γ12 · · · γ1K

¢
,i.e.,

β1Π = −γ1 for the first equation.
Let ∆ stand for endogenous variable, and ∗ stand for exogenous variable.
G∆is the number of included endogenous variables;
G∆∆is the number of excluded endogenous variables;
K∗is the number of included exogenous variables;
K∗∗is the number of excluded exogenous variables.
Partition matrices properly as following:

β1 =
¡
β∆ O∆∆

¢
, γ1 =

¡
γ∗ O∗∗

¢
, Π =

µ
Π∆∗ Π∆∗∗

Π∆∆∗ Π∆∆∗∗

¶
.

Thus β1Π = −γ1 implies
¡
β∆ O∆∆

¢µ Π∆∗ Π∆∗∗

Π∆∆∗ Π∆∆∗∗

¶
= − ¡ γ∗ O∗∗

¢
,

i.e., β∆Π∆∗ = −γ∗ and β∆Π∆∗∗ = O∗∗.
From β∆Π∆∗∗ = O∗∗, we know that we have K∗∗ equations and G∆ − 1 un-

knowns.
Order Condition: K∗∗ > G∆ − 1, i.e., G∆ − 1 out of K∗∗ equations must be

independent.
Rank Condition: Rank(Π∆∗∗) = G∆ − 1.
After finding β from this system of equations, we can use β∆Π∆∗ = γ∗ to find

γ correspondingly.

7. Indirect Least Square

Step 1: Use either Johnston’s approach or Kmenta’s approach to solve for β
and γ in terms of Πij ;

Step 2: Run OLS regressions on the system of reduced form equations and get
Π̂ij ;

Step 3: Replace Πij with Π̂ij to get β̂ and γ̂. By Slutsky’s Theorem, we know
both β̂ and γ̂ are consistent estimators.

8. Two Stage Least Square (TSLS)

Y B0 + XΓ0 = ε ⇒ Y = XΠ0 + V. In particular, the first equation is: y1 =
Y1β

0
1 + X1γ

0
1 + ε1, where y1 is the normalized endogenous variable in the first

equation, Y1 is the included endogenous variables except the normalized one in
the first reduced form equation, X1 is the included exogenous variables in the first
equation.
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From Y = XΠ0 + V , we also have¡
y1 Y1 Y2

¢
=
¡
X1 X2

¢µ Π011 Π012 Π013
Π021 Π022 Π023

¶
+
¡
ν1 V1 V2

¢
,

where Y2 is the excluded endogenous variables in the first equation; X2 is the
excluded endogenous variables in the first equation; Π0 is the blockwise coefficients
matrix, in which the second row of blocks is for excluded exogenous variables and
the first row is for included exogenous variables. Also note that the first column of
blocks consists of parameters in the reduced form for y1. Similarly, the second and
third columns are for Y1and Y2, respectively.

Essentially, we have

¡
y1 Y1 Y2 X1 X2

¢


1
−β01
0
−γ01
0

 = ε1.

(1) Let Z1 =
¡
Y1 X1

¢
and α01 =

µ
β01
γ01

¶
, then y1 = Y1β

0
1 + X1γ

0
1 + ε1

implies y1 = Z1α
0
1 + ε1.

If we use OLS, α̂01,OLS = (Z
0
1Z1)

−1Z01y1 = α01 + (Z
0
1Z1)

−1Z01ε1.

After painful work, we find p lim
³
Z0
1ε1
T

´
6= 0 , thusα̂01 is inconsistent

for α01.
Actually, we would expect this result from the fact that part of the

regressors Z1, namely Y1, is stochastic, which violates our classical as-
sumption of “non-stochastic regressors”.

(2) From¡
y1 Y1 Y2

¢
=
¡
X1 X2

¢µ Π011 Π012 Π013
Π021 Π022 Π023

¶
+
¡
ν1 V1 V2

¢
,

we know Y1 =
¡
X1 X2

¢µ Π012
Π022

¶
+V1 = XΠ02+V1. Thus by OLS, we

have Π̂02 = (X 0X)−1X 0Y1, V̂1 = Y1−XΠ̂02, andX 0V̂1 = 0. Substitute Y1 =
XΠ02+V1 back into y1 = Y1β

0
1+X1γ

0
1+ ε1, we get y1 = XΠ02β

0
1+X1γ

0
1+

ε1 + V1β
0
1. Using the estimators Π̂2 and V̂1, and the fact that XΠ̂02 = Ŷ1,

we get y1 = Ŷ1β
0
1 +X1γ

0
1 + (ε1 + V̂1β

0
1). Let Ẑ1 =

¡
Ŷ1 X1

¢
, then we

can use y1 = Ẑ1α
0
1 + ε1 + V̂1β

0
1 to get ˆ̂α

0
1,TSLS = (Ẑ

0
1Ẑ1)

−1Ẑ01y1 = α01 +

(Ẑ01Ẑ1)−1Ẑ 01ε1+(Ẑ01Ẑ1)−1Ẑ 01V̂1β01. Since X 0V̂1 = 0, Ẑ 01V̂1 =
µ

Ŷ 0
1

X 0
1

¶
V̂1 =µ

Π̂2X
0

X 0
1

¶
V̂1 = 0. Thus ˆ̂α01,TSLS = (Ẑ

0
1Ẑ1)

−1Ẑ01y1 = α01+(Ẑ 01Ẑ1)−1Ẑ01ε1.

Since p lim
³
Ẑ0
1ε1
T

´
= p lim

Ã
Π̂2X

0ε1
T

X0
1ε1
T

!
= 0, we know that ˆ̂α01 is consistent

for α̂01. V ar
³
ˆ̂α01,TSLS

´
= σ21(Ẑ

0
1Ẑ1)

−1 = σ21

µ
Ŷ 0
1 Ŷ1 Ŷ 0

1X1

X 0
1Ŷ1 X 0

1X1

¶
.

(3) Procedures of TSLS:
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Stage 1: a. run OLS regression on the reduced form equations Y1 =
XΠ02 + V1;
b. get Π̂2, V̂1 and Ŷ1;
c. get Ẑ1 =

¡
Ŷ1 X1

¢
.

Stage 2: a. run OLS regression on the structural equation y1 =
Ẑ1α

0
1 + ε1;

b. get consistent estimators ˆ̂α01,TSLS = (Ẑ
0
1Ẑ1)

−1Ẑ 01y1.
Note: From y1 = Ŷ1β

0
1+X1γ

0
1+(ε1+V̂1β

0
1), we know y1−(Ŷ1β̂01+X1γ̂

0
1)

is not the correct residual associated with the disturbance term for the
first equation ε1, and the correct one should be y1−(Ŷ1β̂01+X1γ̂

0
1+V̂1β̂

0
1) =

y1 − [(Ŷ1 + V̂1)β̂
0
1 +X1γ̂

0
1] = y1 − (Y1β̂01 +X1γ̂

0
1).

9. Example #2

y1t y2t 1 x2t x3t x4t
Eq. 1 −1 β12 γ11 γ12 0 γ14
Eq. 2 β21 −1 γ21 0 γ23 0

Reduced forms:

y1t = Π11 +Π12x2t +Π13x3t +Π14x4t + ν1t

y2t = Π21 +Π22x2t +Π23x3t +Π24x4t + ν2t

Stage 1: run OLS on the reduced form equation for Y1, here Y1 = y2t, and save
the fitted values Ŷ1 = ŷ2t;

Stage 2: run OLS on the structural equation for y1, and replace y2t with ŷ2t,
i.e., y1t = β12ŷ2t + γ11 + γ12x2t + γ14x4t + ε1t.

Note: When we are doing TSLS like this, we will get a wrong residual vector,
which is much less than the correct one. (How do we know it is much less? It
should depend upon the sign of β12.) Since when we run regression y1t = β12ŷ2t +
γ11 + γ12x2t + γ14x4t + ε1t, we didn’t do any operation to the residual term, which
ends up with y1t − (β̂12ŷ2t + γ̂11 + γ̂12x2t + γ̂14x4t), whereas the correct residual
term is y1t − (β̂12y2t + γ̂11 + γ̂12x2t + γ̂14x4t).

10. Instrumental Variable (IV) Approach

y1 = Y1β
0
1 +X1γ

0
1 + ε1 = Z1α

0
1 + ε1

Our problem is that p lim
³
Z0
1ε1
T

´
6= 0 so that the OLS estimators are not

consistent. As the instrumental variable approach indicates, we need to find a
proper proxy W for Z1, which satisfies p lim

³
W 0W
T

´
=
P

WW , p lim
³
W 0Z1
T

´
=P

WZ1
, p lim

³
W 0ε1
T

´
= 0.

We find that W = Ẑ1 = (Ŷ1 X1) satisfies such a need. Thus we replace
α̂01,OLS = (Z01Z1)−1Z 01y1 with α̂01,IV = (Ẑ01Z1)−1Ẑ01y1. Note that the TSLS es-
timators are ˆ̂α01,TSLS = (Ẑ01Ẑ1)−1Ẑ01y1, and we can prove Ẑ01Ẑ1 = Ẑ01Z1 so that
α̂01,IV = ˆ̂α01,TSLS . The proof is the following:
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Since Ẑ 01Z1 =
µ

Ŷ 0
1Y1 Ŷ 0

1X1

X 0
1Y1 X 0

1X1

¶
and Ẑ01Ẑ1 =

µ
Ŷ 0
1 Ŷ1 Ŷ 0

1X1

X 0
1Ŷ1 X 0

1X1

¶
, it suffices

to prove Ŷ 0
1 Ŷ1 = Ŷ 0

1Y1 and Ŷ 0
1X1 = Y 0

1X1, which follow the fact that :

Ŷ 0
1 Ŷ1 = Ŷ 0

1(Y1 − V̂1) = Ŷ 0
1Y1 − Π̂2X 0V̂1 = Ŷ 0

1Y1, (X
0V̂1 = 0).

Ŷ 0
1X1 = (Y1 − V̂1)

0X1 = Y 0
1X1 − V̂ 0

1X1 = Y 0
1X1.

V ar
¡
α̂01,IV

¢
= σ21(Ẑ

0
1Z1)

−1 = σ21

µ
Ŷ 0
1Y1 Ŷ 0

1X1

X 0
1Y1 X 0

1X1

¶
.

11. Aitken’s Approach (Given by Dhrymes)

y1 = Y1β
0
1 +X1γ

0
1 + ε1 ⇒ X 0y1 = X 0Y1β01 +X 0X1γ

0
1 +X 0ε1

Assume p lim
³
X0y1
T

´
, p lim

³
X0Y1
T

´
, and p lim

³
X0X1

T

´
are well behaved, and

p lim
³
X0ε1
T

´
= 0.

We get V ar(X 0ε1) = σ21(X
0X).

Invent P such that P 0X 0XP = I and PP 0 = (X 0X)−1, then we have P 0X 0y1 =
P 0X 0Y1β01 + PX 0X1γ

0
1 + P 0X 0ε1, with V ar(P 0X 0ε1) = σ21IK .

Define P 0X 0y1 ≡W1, P 0X 0ε1 ≡ r1, R1 ≡
¡
P 0X 0Y1 P 0X 0X1

¢
= P 0X 0Z1.

W1 = R1α
0
1 + r1implies that α̂01,A = (R

0
1R1)

−1R01W1 = α01 + (R
0
1R1)

−1R01r1.
We also can prove that α̂01,A = ˆ̂α01,TSLS = α̂01,IV .
We have R1 = P 0X 0Z1, W1 = P 0X 0y1, P 0X 0XP = I, PP 0 = (X 0X)−1,

thus R01R1 = (P 0X 0Z1)0(P 0X 0Z1) = Z 01XPP 0X 0Z1 = Z01X(X 0X)−1X 0Z1, R01W1 =
Z01XPP 0X 0y1 = Z01X(X

0X)−1X 0y1
Then α̂01,A = ˆ̂α01,TSLS = α̂01,IV = [Z

0
1X(X

0X)−1X 0Z1]−1Z01X(X
0X)−1X 0y1.

From α̂01,A = α01+(R
0
1R1)

−1R01r1, we have
√
T (α̂01,A−α01) =

³
R0
1R1

T

´−1 ³
R0
1r1√
T

´
.

p lim

½h√
T (α̂01,A − α01)

i h√
T (α̂01,A − α01)

iT¾
= p lim

"µ
R01R1
T

¶−1µ
R01r1√

T

¶µ
r01R1√

T

¶µ
R01R1
T

¶−1#

= σ21p lim

µ
R01R1
T

¶−1
(Since p lim r1r

0
1 = p limP 0X 0ε1ε01XP = σ21I)

√
T (α̂01,A − α01)

Asy−−→ N

"
0, σ21p lim

µ
R01R1
T

¶−1#
.

Est.V ar.(
√
T α̂01,A) = Tσ21

µ
Y 0
1X(X

0X)−1X 0Y1 Y 0
1X(X

0X)−1X 0X1

X 0
1X(X

0X)−1X 0Y1 X 0
1X(X

0X)−1X 0X1

¶−1
(Substitute Z1 = ( Y1 X1 ) into R01R1 = Z01X(X 0X)−1X 0Z1.)
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σ̂21 =
(y1 − Y1β̂

0
1 −X1γ̂

0
1)
0(y1 − Y1β̂

0
1 −X1γ̂

0
1)

T
= e01e1/T

(or replace T with T −G∆ −K∗ + 1)

σ̂gh =
(yg − Ygβ̂

0
g −Xgγ̂

0
g)
0(yh − Yhβ̂

0
h −Xhγ̂

0
h)

T
= e0geh/T

12. Three Stage Least Squares

Using Aitken’s approach, we get consistent estimators α̂01,A for equation 1 by
doing regression W1 = R1α

0
1 + r1. If we do the same procedure to every equation,

we have W = Rα0 + r, where

W =


W1

W2

...
WG

 , α0 =


α01
α02
...
α0G

 , r =


r1
r2
...
rG

 , R =


R1 0 ... 0
0 R2 ... 0
... ... ... ...
0 0 ... RG

 .

Then ˆ̂α̂03SLS = [R
0V −1R]−1R0V −1W . (Here we are using GLS estimators for-

mula.)

V = E(rr0) =


σ21I σ12I ... σ1GI
σ21I σ22I ... σ2GI
... ... ... ...
σG1I σG2I ... σ2G

 =
X
⊗I

The corresponding GLS estimators are:

ˆ̂
α̂03SLS = [R

0(
−1X
⊗I)R]−1R0(

−1X
⊗I)W.

√
T (
ˆ̂
α̂0GLS − α0)

Asy−−→ N

0, p limÃR0(
P−1⊗I)R

T

!−1 .
To get the FGLS estimators, following suggestion by Zellner and Theil, use

TSLS residuals to compute
P̂
: σ̂2g = e0geg/T and σ̂gh = e0geh/T .

13. Comparison of Methods of Regressing SEM

First of all, we know OLS estimators are not consistent, and indirect least
square estimators are consistent.

Second, if we consider one equation at a time, this method is called limited
information method. Note that TSLS, IV, and Aitken estimators are exactly the
same. Also note that TSLS estimators are asymptotically equivalent to the Limited
Information Maximum Likelihood estimators.

Finally, if we try to consider the system of equations simultaneously in order
to capture the cross-equation correlation, this method is called full information
method. We can use either 3SLS or Full Information Maximum Likelihood estima-
tors, which are asymptotically equivalent.
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14. Testing

(1) Test particular parameter:
Using Aitken’s approach, we have W1 = R1α

0
1 + r1, and α̂01,A =

(R01R1)
−1R01W1.

√
T (α̂01,A − α01)

Asy−−→ N

"
0, σ21p lim

µ
R01R1
T

¶−1#

We can estimate σ21p lim
³
R0
1R1

T

´−1
as Φ1 = T σ̂21(R

0
1R1)

−1, which is a

(G∆ −K∗)× (G∆ −K∗) square and symmetric matrix.

The so-called “T-Statistic” is:
α̂01,i−α01,i√
Φ1,ii/T

Asy−−→ N(0, 1).

Denote by r̃1 the residual for regression W1 = R1α
0
1 + r1. Then

r̃1 = [IK −R1(R
0
1R1)

−1R01]r1, and

r̃01r̃1 = r01[IK −R1(R
0
1R1)

−1R01]r1
Asy−−→ χ2(ν).

ν = trace[IK −R1(R
0
1R1)

−1R01] = K −K∗ − (G∆ − 1) > 0
This is for over-identified equation, i.e., ν is the degree of over-identification,
then we have the alternative t-statistic:

α̂01,i − α01,iq
r̃01r̃1(R

0
1R1)

−1
ii /ν

Asy−−→ t(ν).

(2) Test identification problem:
Recall the set-up of Kmenta’s Approacch:

BΠ+ Γ = 0⇒¡
β11 β12 · · · β1G

¢
Π = − ¡ γ11 γ12 · · · γ1K

¢
, i.e.,

β1Π = −γ1.
Let ∆ stand for endogenous variable, and ∗ stand for exogenous vari-

able.
G∆is the number of included endogenous variables;
G∆∆is the number of excluded endogenous variables;
K∗is the number of included exogenous variables;
K∗∗is the number of excluded exogenous variables.
Partition matrices properly as following:

β1 =
¡
β∆ O∆∆

¢
, γ1 =

¡
γ∗ O∗∗

¢
, Π =

µ
Π∆∗ Π∆∗∗

Π∆∆∗ Π∆∆∗∗

¶
.

Thus β1Π = −γ1 implies¡
β∆ O∆∆

¢µ Π∆∗ Π∆∗∗

Π∆∆∗ Π∆∆∗∗

¶
= − ¡ γ∗ O∗∗

¢
,

i.e., β∆Π∆∗ = −γ∗ and β∆Π∆∗∗ = O∗∗.
From β∆Π∆∗∗ = O∗∗, we know that we haveK∗∗ equations andG∆−1

unknowns.
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Define g ≡ G∆ − 1. Considering the rank condition, we have the
following:

If Rank(Π∆∗∗) = g, then the rank condition satisfies, and we can
solve for β∆ uniquely;
if Rank(Π∆∗∗) > g, then the rank condition fails due to too many exclu-
sion, and the test for this situation is called “zero restriction test”;
if Rank(Π∆∗∗) < g, then the rank condition fails due to too little inde-
pendent relations, and the test for this situation is called “rank test”.
(a) Rank Test

H0 : Rank(Π
∆∗∗) < g,i.e., not identified; HA : Rank(Π

∆∗∗) = g, i.e.,
identified.
Let G∆ = 1 +Gϕ. Let y1 be the normalized endogenous variable.
Since β∆ =

¡ −1 βϕ1
¢
, where βϕ1 is the coefficients associated

with Y1 in the first structural equation, β∆Π∆∗∗ = O∗∗ implies¡ −1 βϕ1
¢µ π∗∗

Πϕ∗∗

¶
= O∗∗, where π∗∗ is the single row of co-

efficients corresponding to y1 in the reduced form, and Πϕ∗∗ is the
coefficients block corresponding to Y1 in the reduced form.
Thus βϕ1Π

ϕ∗∗ = −π∗∗ implies that Rank(Π∆∗∗) = Rank(Πϕ∗∗).
Then we have the alternative set of hypothesis: H0 : Rank(Π

ϕ∗∗) <
g,i.e., not identified; HA : Rank(Π

ϕ∗∗) = g, i.e., identified.
Since we have totally g + 1 included endogenous variables, thus we
have g+1 possible ways of normalization. Only if all of normalization
fail the rank test, can we say the considered equation fails the rank
test.

The likelihood ratio statistic is λ̂k =
³
1 + φ̂g

´−T/2
, and the asymp-

totic distributions of the statistic are: −T ·ln(λ̂k) asy−−→ χ2(K∗∗−g+1)
or φ̂g · T−K

K∗∗−g+1
asy−−→ F (K∗∗ − g + 1, T −K), where φ̂g is the small-

est root of
¯̄
W ∗d − φW∆∆∗¯̄ = 0, and W∆∆∗ = Y 0MY, W ∗d =

Y 0
1MdY1, M = I −X(X 0X)−1X 0,

M1 = I −X1(X
0
1X1)

−1X 0
1, Md =M1 −M.

The decision rule for this test statistic is: reject H0 if φ̂g is signifi-
cantly larger than 0.
In particular, if G∆ = 2, then we have exact distribution of the test
statistic in the sense of the following: G∆ = 2 ⇒ Gϕ = 1 and g =
1⇒ Πϕ∗∗ is 1×K∗∗, then Rank(Πϕ∗∗) < g is equivalent to
Rank(Πϕ∗∗) = 0. Then we can use Wald test to test the elements of
Πϕ∗∗ are all jointly zero.

(b) Zero Restriction Test
H0 : Rank(Π

∆∗∗) > g,i.e., not identified; HA : Rank(Π
∆∗∗) = g, i.e.,

identified.

The likelihood ratio statistic is λ̂z =
³
1 + ξ̂

´−T/2
, and the asymp-

totic distributions of the statistic are: −T · ln(λ̂z) asy−−→ χ2(ν) or
ξ̂ · T−Kν

asy−−→ F (ν, T −K), where ν = K∗∗ − g is the degree of over-
identification, and ξ̂ is the smallest root of

¯̄
W ∗d − ξW∆∆∗¯̄ = 0, and
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W∆∆∗ = Y 0MY, W ∗d = Y 0
1MdY1, M = I −X(X 0X)−1X 0,

M1 = I −X1(X
0
1X1)

−1X 0
1, Md =M1 −M.

The decision rule for this test statistic is: reject H0 if ξ̂ is significantly
larger than 0.

15. A Recursive Two-Equation System

A recursive Two-Equation System without Exclusion Restrictions

(1) Basics
Let’s consider the following structural equations:¡

1
−α

0
1

¢ ¡
P
Q

¢
=
³
β1
β2

´
X+

¡
u1
u2

¢
.

The reduced-form equations are:¡
P
Q

¢
=
³
β1
αβ1+β2

´
X+

¡
u1
αu1+u2

¢
.

Clearly, the first equation passes the order condition but the second equa-
tion fails the order condition. Yet this recursive system is identified. Why?
The rank and order condition is the necessary and sufficient condition for
a system to be identified when there is no restrictions on the disturbance
terms on the equations. Since we have some restrictions on the distur-
bance terms, the system is identified through the variance component.
How?

ΣV V =

µ
σ2u1 ασ2u1 + σ2u2
ασ2u1 + σ2u2 σ2u2

¶
=

µ
SV1V1 SV2V1
SV1V2 SV2V2

¶
.

We get α̂ = (SV1V2−SV2V2)/SV1V1 , and then β̂1, β̂2 can be estimated from
the reduced form equations.

(2) Measurement errors in system of equations
To see why measurement errors causes inconsistent estimates, consider

the following model y = β0x+u and x̃ = x+ e. u and e are independent
and we observe x with measurement error. That is, we don’t observe x
directly but x̃. Let Y = (y0 x̃0)0, then we have

ΣY Y =

µ
β0Σxxβ +Σuu β0Σxx
Σxxβ Σxx +Σee

¶
=

µ
Syy Syx̃
Sx̃y Sx̃x̃

¶
.

Clearly β̂OLS =
Sx̃y
Sx̃x̃

= Σxxβ
Σxx+Σee

is not consistent.
While we can use instrumental variables approach to tackle the mea-

surement error problem, we can also use the approach of multiple mea-
sures. For example, suppose we have x1 = x+ e1 and x2 = x+ e2, where
u, e1 and e2 are mutually independent. Let Y = (y0 x10 x20)0, then we
have

ΣY Y =

 β0Σxxβ +Σuu β0Σxx β0Σxx
Σxxβ Σxx +Σe1e1 Σxx
Σxxβ Σxx Σxx +Σe2e2

 .

Clearly β is overly identified by one and everything else is exactly iden-
tified. If we allow e1 and e2 having the same variance, then Σee is also
overly identified by one.
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Suppose that the structural equations are BY + ΓX = ε where X is
measured with error, i.e., we observe X̃ = X + δ. The reduced form is
Y = −B−1ΓX+B−1ε. LetW = (Y0 X̃0)0, then we have

ΣWW =

µ −(B−1Γ)ΣXX(B
−1Γ)0 +B−1ΣεεB−10 −(B−1Γ)ΣXX

−ΣXX(B
−1Γ)0 ΣXX +Σδδ

¶
=

µ
SY Y SY X̃
SX̃Y SX̃X̃

¶
.

Hence we have SY X̃ = −B−1Γ(SX̃X̃ −Σδδ), or BSY X̃ = −Γ(SX̃X̃ −
Σδδ), which can also be derived by post-multiplying BY = −Γ(X̃+ δ)+ε

by X̃ and then taking the expectation of both sides.





CHAPTER 13

Models with Discrete Dependent Variables

1. Truncated Model

Suppose that y ∼ N(µ, σ2) and all our observations are y > y∗. Then y∗ is
called the point of truncation, and the density of y is

f(y|y > y∗) = 1
σφ

µ
y − µ

σ

¶
1

1− Φ[(y∗ − µ)/σ]
,

where φ and Φ are p.d.f. and c.d.f. of standard normal, respectively.

2. Censored Model

Among the sample of size n, we have a sub-sample of size n1, the information
obtained of which is simply y 6 y∗, and we have exact values known for the rest of
the sample. The joint density of the sample is¡

n
n1

¢ h
Φ(y

∗−µ
σ )

in1 ·Yn−n1
i=1

1
σ · φ(yi−µσ ).

3. Classification of Discrete Dependent Variables

It may be the case that some dependent variables, such as the number of
patents granted to a company in a year, assume discrete values, but those discrete
values are not categorical. Here we are mainly concerned with categorical values. In
particular, the categorical values can be further classified as “ordered,” “sequential,”
or “non-ordered non-sequential.”

4. Probit/Logit Model for a Binary Case

Assume that Y∗i = Xiβ+ui and we observe that Yit = 1 if Y ∗it > 0 and Yit = 0
otherwise. Clearly we have

Pr(Yit = 1) = Pr(uit > −Xitβ) = 1− F (−Xitβ),

where F (·) is the c.d.f. for uit. The sample likelihood is then

L =
Y
Yit=0

F (−Xitβ)
Y
Yit=1

[1− F (−Xitβ)].

77
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If the c.d.f. of uit is assumed to be logistic, we have the logit model. In this
case, we have

Pr (Yit = 0) = F (−Xitβ) =
exp(−Xitβ)
1+exp(−Xitβ)

= 1
1+exp(Xitβ)

,

Pr (Yit = 1) = 1− F (−Xitβ) =
1

1+exp(−Xitβ)
= exp(Xitβ)

1+exp(Xitβ)
,

Pr(Yit=1)
1−Pr(Yit=1) =

Pr(Yit=1)
Pr(Yit=0)

= eXitβ , and

ln
h

Pr(Yit=1)
1−Pr(Yit=1)

i
= Xitβ.

If the c.d.f. of uit is assumed to be N(0, σ2), we have the probit model. In this
case,

F (−Xitβ
σ ) =

Z −Xitβ/σ

−∞
1√
2π
exp(−u2

2 )du.

It can be easily seen from the equation above and the sample likelihood function
that we can estimate only β

σ , not β and σ separately. Hence we might as well
assume σ = 1 to start with. In particular, we have

Pr(Yit = 0) = Φ(−Xitβ) = 1− Φ(Xitβ),

Pr(Yit = 1) = 1− Φ(−Xitβ) = Φ(Xitβ).

The marginal effects for logit and probit models can be found as the following:

∂P̂1t
∂xitk

= exp(Xitβ)
[1+exp(Xitβ)]2

βk, and ∂P̂1t
∂xitk

= φ(Xitβ)βk,

where P̂1t is the predicated probability for Yit = 1.
Because the c.d.f. of normal and logistic distributions are very close to each

other except at tails, we are not likely to get very different results from using two
models (note that only the marginal effects are directly comparable though), unless
the samples are large so that we have enough observations at the tails.

5. Ordered Probit/Logit Model

Assume that Y∗i = Xiβ + ui and uit ∼ N(0, 1). The K − 1 thresholds are
denoted as τ1, ..., τK−1. Clearly we have τ0 = −∞ and τK = +∞. We normalize
τ1 = 0 for convenience. What we are observing is Yit = k with probability F (τk −
Xitβ)− F (τk−1 −Xitβ),∀k. Equivalently, we have Pr(Yit 6 k) = F (τk −Xitβ).

6. Sequential Probit

Assume that Y ∗ikt = Xiktβk + uikt and we observe Yikt = k with probability

Pr{Y ∗ijt > 0,∀j ∈ [1, k − 1], and Y ∗ikt 6 0},∀k ∈ [2,K − 1], and
Pr(Yit = 1) = Pr(Y

∗
i1t 6 0),

Pr(Yit = K) = Pr{Y ∗ikt > 0,∀k ∈ [1,K − 1]}.
Note that we are allowing different underlying schemes for different categories.

For the case of no correlation across categories, we have uikt ∼ i.i.d. N(0, 1). If
K = 4, then we have



7. UNORDERED NON-SEQUENTIAL MODEL 79

Pr (Yit = 1) = Φ(−Xi1tβ1)

Pr (Yit = 2) = Φ(Xi1tβ1)Φ(−Xi2tβ2)

Pr (Yit = 3) = Φ(Xi1tβ1)Φ(Xi2tβ2)Φ(−Xi3tβ3)

Pr (Yit = 4) = Φ(Xi1tβ1)Φ(Xi2tβ2)Φ(Xi3tβ3).

For the case allowing correlation across categories, we have uit ∼ N(0,R),
where R is both the covariance and correlation matrix of uit. If K = 4, then we
have

Pr (Yit = 1) = Φ(−Xi1tβ1)

Pr (Yit = 2) = Φ(Xi1tβ1,−Xi2tβ2|− ρ12)

Pr (Yit = 3) = Φ(Xi1tβ1,Xi2tβ2,−Xi3tβ3|ρ12,−ρ13,−ρ23)
Pr (Yit = 4) = Φ(Xi1tβ1,Xi2tβ2,Xi3tβ3|ρ12, ρ13, ρ23).

Note that whenever we change −Xiktβk into Xiktβk, we have to reverse the
sign of ρkm,∀m ∈ [1,K − 1]. Note further that the sample fraction of Yit = 1 gives
us one moment, and we can estimate β1 accordingly. Although the sample fraction
of Yit = 2 gives us one additional moment, we have two more parameters, β2 and
ρ12, to estimate, a mission impossible. In the case where K = 4, we have merely
three moments yet we have six parameters to be estimated. We inevitably run into
an unidentified system.

7. Unordered Non-Sequential Model

Unordered Non-Sequential Model with Mutually Exclusive and Exhaustive Cat-
egories

(1) Basics
Denote as Pk the probability associated with the kth category, k =

1, 2, ...,K. Then the idea is to express these probabilities in binary form.
Let

Pk
Pk + PK

= F (Xiβk),∀k = 1, ...,K − 1,
then

Pk
PK

=
F (Xiβk)

1− F (Xiβk)
≡ G(Xiβk).

Since
PK−1

k=1
Pk
PK

= 1−PK
PK

= 1
PK
− 1, we have

Pk =
1

1 +
PK−1

k=1 Pk/PK
.

Therefore,

Pk =
G(Xiβk)

1 +
PK−1

m=1G(Xiβm)
,∀k = 1, ...,K − 1.
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(2) Multinomial logit
Assume that U∗ik = Xikβk + uik, k = 1, ...,K and uik is distributed

as logistic. Note that we cannot allow correlation across categories when
using logit model. Since the sum of the probabilities for any K − 1 cat-
egories will uniquely determine the probability for the only category left,
i.e., we have only K − 1 equations for K βk’s, we need some sort of
normalization for β.

If we choose βK = 0 then

Pik =
exp(Xikβk)

1+
PK−1

m=1 exp(Ximβm)
, k = 1, ...,K − 1.

If we choose
PK

k=1 βk = 0, then

Pik =
exp(Xikβk)PK

m=1 exp(Ximβm)
, k = 1, ...,K.

(Find out how to derive the probabilities above from the double-
exponential distribution.)

(3) Multinomial probit
Assume that U∗ik = Xikβk+uik, k = 1, ...,K where ui ∼ N(0,R), R is

both the covariance and correlation matrix for ui. We have the following
probabilities:

Pik = Pr{U∗im 6 U∗ik,∀m 6= k}
= Pr{uim − uik 6 −(Ximβm −Xikβk),∀m 6= k}
= ΦK−1[−(Xi1β1 −Xikβk), ...,−(XiKβK −Xikβk)|ARA0],

where

A =

·
Ik−1 −ik−1 0k−1
0K−k −iK−k IK−k

¸
.

Let’s consider the case where K = 3 for a closely related model, U∗ik =
Xiβk + uik, k = 1, ...,K. Let’s use U∗i3 as the base case. Then we have

Pr(U∗i1 6 U∗i3) = Pr
h
ui1−ui3
σ1−σ3 6 −Xi(β1−β3)

σ1−σ3

i
,

Pr(U∗i2 6 U∗i3) = Pr
h
ui2−ui3
σ2−σ3 6 −Xi(β2−β3)

σ2−σ3

i
.

What we can estimated is β1−β3
σ1−σ3 ,

β2−β3
σ2−σ3 , and ρui1−ui3,ui2−ui3 , yet we have

βk, σk, (k = 1, 2, 3), and ρ12, ρ13, ρ23 to estimate in the original model.
Although we couldn’t estimate the full model, we do capture the most
interesting features of the model from the three parameters we can esti-
mate.

(4) Panel/replicated data probit model
Assume Y ∗it = Xitβ + ei + dit, t = 1, ..., Ti, where ei ∼ N(0, σ2e) and

dit ∼ N(0, 1). We observe Yit = 0 if Y ∗it 6 0 and Yit = 1 if Y ∗it > 0. Let’s
define an indicator variable for the sign, Sit = 1 − 2Yit. Clearly we have
Sit = 1 if Y ∗it 6 0 and Sit = −1 if Y ∗it > 0. Then the sample likelihood is

Li = ΦTi
½
−Si1Xi1β√

1+σ2e
, −Si2Xi2β√

1+σ2e
, ...,

−SiTiXiTi
β√

1+σ2e
|RTi

¾
,

where RTi = SiSi
0⊕ (σ2e ii0+ITi). ⊕ denotes element-by-element product.



7. UNORDERED NON-SEQUENTIAL MODEL 81

The likelihood for the individual i is

Li =
Z
ei

1
σe
φ( eiσe )

YTi

t=1
Φ[−Sit(Xit + ei)]dei.
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