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Preface

Just a few sessions into the “Economic Uncertainty and Information” class
taught by Professor Anjan V. Thakor in Winter 2001, I realized that an
electronic version of the notes, instead of my poor hand writing, would be
a valuable resource to keep, update, and refer back to. So I organized the
notes electronically while taking the class in that semester. Subsequently
I made quite extensive changes to the notes in Winter 2002, when I sat in
the same class again in fond of Professor Thakor’s energetic teaching and
the thought-provoking issues being discussed in the class. Below is a brief
overview of the material covered.

This is a class concerning the studies in presence of asymmetric informa-
tion. What is “asymmetric information” anyway? This is a concept opposed
to “full information,” a setting of which is usually considered to possess the
following characteristics: (1) there is only one single price in the market; (2)
the market is cleared; (3) all individuals are price takers; and (4) there is a
linear pricing rule, i.e., the price charged is independent of transaction quan-
tities. In a typical game with “asymmetric information”, the agent that has
more information than the other will use the information advantage strate-
gically to his own good. We often observe the following characteristics in an
“asymmetric information” setting: (1) there may not be a single price; (2)
firms don’t always act as price taker, or “market power” (due to information
advantages) does exist (i.e., information produces rents); (3) price charged
may depend on quantities sold (or non-linear pricing rule); (4) a competitive
equilibrium may not exist.

Don’t confuse asymmetric information models with irrational expecta-
tion models. In fact, when we mention “rational expectation” models, we
meant that the following two conditions are satisfied: (1) there is unbiased
expectation of the future among all players, i.e., the priors are “correct;”
and (2) all players use Bayes rule to update beliefs. It turns out that the
second qualification for “rational expectation” is not as restrictive as we
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might thought, but the first qualification is really restrictive. Although
many people assume that investors have rational expectation, we find that
upon evaluating the investors behavior ex post, the second qualification was
more or less fulfilled but the empirical data exhibits systematic bias in terms
of the first qualification.

Under asymmetric information, prices often convey information. Stiglitz
(1971) studies the commodity market for corn. Some people know the aver-
age size of corn production ahead of all others, so these privileged folks can
trade successfully on the futures market. Once people recognize the superior
information possessed by the privileged group, the movement of which on
the futures market can be used to infer the private information and thus
strategic actions can take place on the spot market as well. Stiglitz’s dras-
tic finding was that prices cannot convey too much information, otherwise
the market will fail. This is somewhat counter-intuitive because we usu-
ally think that market will fail only due to lack of information. However,
Stiglitz argues that at the moment when the analysts try to trade using
the information they acquired with certain cost, the commodity prices will
incorporate such new information immediately so that the information col-
lectors don’t even have a chance to trade. Therefore, when the prices convey
too much information or too fast, there is no incentive for people to collect
information in the first place. Grossman and Stiglitz (1976) further indicate
that the strong-form efficiency1 is simply not even theoretically efficient, a
conclusion now known as “Grossman- Stiglitz Paradox.”

In the first four chapters, we discuss static models with information
asymmetry. In Chapter 1, we cover the famous ”lemon’s problem”, also
known as adverse selection problem, and Spence’s model in which workers
reveal their types to employers by choosing appropriate education level. In
Chapter 2, we introduce self-selection models, such as Rothschild-Stiglitz
model concerning the insurance market and Ofer-Thakor model regarding
firm’s decision of cash repayment. We devote Chapter 3 to basic game
theoretic knowledge that will be useful for the rest of topics covered in this
course. In particular, we carefully explain different refinements of Nash
Equilibrium using extensive examples and real world applications. Chapter
4 touches upon principal-agent model.

Starting Chapter 5, we cover some real-world applications related to in-
1 “Weak-form efficiency” says that past price information cannot predict future prices.

“Semi-strong-form efficiency” indicates that all publicly available information cannot pre-
dict future prices. “Strong-form efficiency” is achieved when no existing information,
public or private, can predict future prices.
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formation economics. Reputations model is discussed in Chapter 5. Market
microstructure issues and security design are explained in Chapter 7 and 8,
respectively. In chapter 6 and 9, we discuss models of herding behavior and
behavioral irrationality such as over-confidence and cascades.
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Chapter 1

Market Failure and Signaling

As we know, Akerlof, Spence and Stiglitz won the Nobel Prize in Economics
in year 2001 “for their analyses of markets with asymmetric information.”
So it is not surprising that this class starts with the two Nobel Prize winning
papers by the first two laureates.

1.1 Akerlof (1970)

In the real world, we observe many markets in which prices for used goods
are “too low.” While it is easy to attribute the phenomenon to irrational
behavior of market participants, it proves difficult to explain on rational
ground. So the research question Akerlof asks in his paper is: why do mar-
kets in presence of qualitative uncertainty exhibit low equilibrium prices?
A brief answer from Akerlof is that sellers are better informed about the
quality and they behave strategically in quality choices, and that the inter-
action between the existence of asymmetric information and the buyers with
rational expectations leads to market failure.

Here is one variation of the Akerlof (1970) paper. There are two goods
in the economy that differ in characteristics of quality. The numeraire good
1 has a fixed quality and price, both of which are normalized to be 1. Good
2 has a variable quality, uniformly distributed between 0 and 2, and its price
p will be determined endogenously. There are two types of agents in this
economy and each agent is considered atomistic in its type. Each type A
agent is endowed with only N units of numeraire good 1 and each type B
agent is endowed with only M units of good 2. The information asymmetry



2 Market Failure and Signaling

lies in the fact that only type B agents know the true quality of good 2.
Type B agents will potentially sell the quality-varying good 2 to type A
agents in exchange of good 1, and both types of agents derive utility from
consuming two types of goods.

Both the quantity and quality of goods consumed determine the objective
utility level. The objective marginal utility µ(s) from consuming the sth unit
of good 2 diminishes at a constant rate and is equal to the quality at each
infinitesimal amount. For example, type B agent enjoys utility 2 from the
first ε > 0 unit of good 2, and derives zero utility from the last unit. In
the quality-quantity space below, we have µ(s) = 2 − (2/N) · s. When type
B agent provides t units of good 2 for trade, it is in his interest and thus
common knowledge that he will sell first the good with lowest quality, and
the quality of good 2 in trade ranges from 0 to µ(M − t) = 2t/M.

 

 

 

 

 

 

 

 

 

Figure 3. Quality-Quantity Pair in an Adverse Selection Model 

 

 

 

 

 

 

 

 

Figure 4. First- and Second-best Solutions in Spence Model 

 

 

 

 

 

 

 

 

Figure 5. Simply Illustration of the State Wealth Space 
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Figure 1.1: Quality-Quantity Pair in an Adverse Selection Model

Due to difference in endowment, two types of agents assign different
contribution factors, c1 = 3/2 and c2 = 1, to the objective utility level for
good 2. Hence the type B agent derives total utility 1·[1/2·(2+2t/M)·(M−t)] =
M−t2/M from consuming M−t units of good 2, and the type A agent derives
expected total utility 3/2 · µ · t from consuming t units of good 2, where µ is
the expected quality of good 2 in trade.

Since the numeraire good has quality fixed at level 1, the derived utility
from consuming good 1 is the same as the consumption amount. In order to
avoid the confounding effects from the concavity, we assume that the total
utility for each agent is simply the sum of the perceived utility from two
goods. Denote by x1

a and x1
b the consumption of good 1 by two types of

agents.

Therefore, on the supply side of good 2, a typical type B agent is opti-
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mizing
max

t
x1

b + (M − t2

M ) s.t. x1
b = p · t,

or,
max

t
p · t+ (M − t2

M ).

The first-order condition to this optimization boils down to p− 2t/M = 0.
Hence the supply schedule for good 2 is

t =
{

1
2M · p if p ≤ 2;
M if p > 2.

On the demand side for good 2, a typical type A agent is optimizing

max
t

x1
a + 3

2µt s.t. N − x1
a = p · t,

or,
max

t
N − pt+ 3

2µt.

The first-order condition to this optimization is −p + 3/2µ = 0. The
demand schedule for good 2 is

t =


N
p if p < 3

2µ, i.e., goods 2 is strictly preferred;
[0, N

p ] if p = 3
2µ, i.e., indifferent between two goods;

0 if p > 3
2µ, i.e., goods 1 is strictly preferred.

In observance of price p (p ≤ 2) (since the ratio of marginal utility to
price for the numeraire good is 1, the marginal utility and thus its quality
should be in line with the price for good 2), buyers know that the supply
of goods 2 is 1

2Mp and the highest quality available will be 2 − 2 · (M −
1
2Mp)/M = p. The lowest quality will be 0 and thus the rational expectation
of the buyers on the quality levels is µ = 1

2p, which falls into the region
p > 3

2µ. Hence the relevant portion of the demand schedule is effectively
zero, i.e., no trade will occur. We usually call this case as the “broken-down
lemon market.”

Suppose that we use c2 in this calculation instead of the specific value
3
2 , what is the admissible region of c2 that allows a “broken-down lemon
market?” Everything remains the same except that we need to use c2 to
replace 3

2 in the demand correspondence. So the region is c2 ∈ (0, 2).
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1.2 Spence(1974)

While Akerlof observes market breakdown as a very serious consequence
of asymmetric information, we don’t observe many market failures in the
reality despite the fact of asymmetric information. The research question
Spence asks is: can we construct a model in which Akerlofian market break-
down can be avoided even when there is asymmetric information? The brief
answer here is positive. In a setting of signaling with attribute-specific costs,
employees know their own productivity better than the employers, and they
can effectively signal their superior information so as to reach an equilibrium.

Employers try to hire workers with the realization that they cannot
directly observe the workers’ productivity S except the workers’ education
levels y. So the employers set the wage W (y) according to the education
level. The workers’ productivity is determined by the innate ability n and
acquired education level y, i.e., S = S(y, n). There is, however, a varying
cost of acquiring education, i.e., C = C(y, n). By assumption, we have
Sy > 0, Sn > 0, Cy > 0, Cn < 0. The goal of the paper is to find out some
sufficient conditions for the existence of a separating equilibrium so that
workers can use education level as a signal to reveal their innate ability.

The optimization problem for workers is

max
y

W (y)− C(y, n),

and the first-order conditions are Wy = Cy for each ability level n. In the
same time, we know the labor market condition W (y) = S(n, y) holds at
the equilibrium.

Proposition: If Cyn < 0 and there exists yo such that Sy < Cy,∀y ≥ yo,
then there exists a one-parameter family of equilibrium-offered wage sched-
ules, all of which are equilibria. This one-parameter family is determined
by Wy = Cy and W (y) = S(n, y).

Proof: It suffices to make sure that the second-order condition of the
worker’s optimization holds so that there exists an unique equilibrium edu-
cation level corresponding to each ability level and wage schedule. That is,
we need to make sure Wyy − Cyy < 0.

It is natural to examine how the equilibrium conditions vary by innate
ability. Denote as y∗ the equilibrium education level for a given wage sched-
ule W (y). How does y∗ vary for each ability level n? We can totally differ-
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entiate the first-order conditions w.r.t. n, and have the following,

Wyy ·
dy∗

dn
− Cyy ·

dy∗

dn
− Cyn = 0,

which implies,

Wyy − Cyy = Cyn ·
1

dy∗/dn
.

Because the wage is set up so that W (y) = S(n, y), how does the wage
schedule change w.r.t. ability n? We can again totally differentiate this
labor market condition to get

Wy ·
dy∗

dn
= Sy ·

dy∗

dn
+ Sn,

which implies,
dy∗

dn
=

Sn

Wy − Sy
.

Combining these two differentiation results and using the first-order con-
ditions Wy = Cy, we reach the following,

Wyy − Cyy = Cyn ·
Cy − Sy

Sn
.

Since we have Sn > 0 by assumption, the second-order conditions hold if
Cyn < 0 and Cy > Sy.

What exactly do these conditions mean? The condition Cyn < 0 means
that the marginal cost of obtaining additional education is lower for more
talented people. The condition Cy > Sy means that the marginal cost of
obtaining additional education exceeds the marginal productivity gain, i.e.,
the education level is more than enough comparing to the socially optimal
level at which we have Cyso = Syso = Wyso . The feature of over-investment
of education in this model bears a name of “dissipative signaling model”
in economics or “money-burning model” in finance. The highly-talented
people in this economy are making sacrifice by over-investing to reveal that
they are indeed highly-talented. Note that if the signal, the education level
in this case, is too productive socially, i.e., Cy < Sy, then we won’t reach
an equilibrium in that the education level cannot effectively separate the
talented from the less talented.

Now we know that the employers’ objective is to design the wage sched-
ules W ∗(y) such that W ∗(y) = S(y, n), W ∗

y = Cy and W ∗
yy − Cyy < 0 all
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hold. The workers then would choose an optimal education level y∗ that
truly reflects their individual ability.

Corollary: In any equilibrium mentioned above, it must be the case
that Wy > Sy, i.e., the contractual marginal rewards is greater than the
socially optimal level Sy and that dy∗/dn > 0, i.e., more talented people
choose higher education level.

Proof: We can easily use the first-order conditions Wy = Cy and one
of the conditions required, Cy > Sy,∀y ≥ yo, to reach the first conclusion
above immediately. Similarly, we have

dy∗

dn
=

Sn

Wy − Sy
=

Sn

Cy − Sy
> 0. QED

The finding of Wy > Sy reveals the fact that employers pay higher wages
to better-educated not only because the higher productivity associated with
higher education, but also because a higher education signals higher capa-
bility.

It is useful to find out the full-information counterpart to compare the
results. The optimization problem here is max

y
W (y) − C(y, n). Since the

workers’ abilities n are always observable, the condition W (y) = S(y, n)
holds all the time, not just at the equilibrium. Therefore, we can replace the
W (y) in the objective with S(y, n), i.e., to find a solution for max

y
S(y, n)−

C(y, n). The social optimal solution yso satisfies Cyso = Syso = Wyso , as
mentioned earlier. The comparison of yso under full information and y∗

under asymmetric information is depicted in the figure below.

 

 

 

 

 

 

 

 

 

Figure 3. Quality-Quantity Pair in an Adverse Selection Model 

 

 

 

 

 

 

 

 

Figure 4. First- and Second-best Solutions in Spence Model 

 

 

 

 

 

 

 

 

Figure 5. Simply Illustration of the State Wealth Space 
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Figure 1.2: First- and Second-best Solutions in Spence Model
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Chapter 2

Self-selection Models

2.1 Rothschild and Stiglitz (1976)

The insurance market has potentially huge adverse selection, problems that
could lead to market breakdown. But in reality we still observe the insur-
ance market functioning. The research question here is: can we design an
equilibrium model in which an equilibrium exists despite adverse selection?
Moreover, can this equilibrium be unique?

Assume for now that there is only one type of individuals whose income
is W when no accident happens. The individuals would enjoy income W −d
when an accident does happen with probability p. There are many insurance
companies offering insurance contracts with different premium α1 and corre-
sponding policy claim α̂2. The individuals are assumed to be risk-averse and
insurance companies are risk-neutral. Denote as W1 the individuals’ income
in the case of no accident, i.e., W1 ≡W −α1, and denote as W2 the individ-
uals’ income in the case of accident, i.e., W2 ≡W−d−α1+α̂2 ≡W−d+α2.

On the demand side for insurance, the individuals are maximizing the
expected utility in the form of V (p,W1,W2) = (1 − p)U(W1) + pU(W2),
where U ′ > 0 and U ′′ < 0. The value of the insurance contract (α1, α2) can
be expressed as V (p, α1, α2) = V (p,W − α1,W − d + α2) to the individu-
als. So the optimization problem for individual with risk probability p is
to choose (α1, α2) to maximize the expected utility. Here we assume that
the individual rationality condition1 holds, i.e., V (p, α1, α2) ≥ V (p, 0, 0) ≡

1 Note that the individual rationality (IR) condition is one of two constraints used very
often in analyzing asymmetric information models. The other constraint also used very
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V (p,W,W − d), i.e., holding the insurance policy should make individuals
no worse off than not holding the policy. On the supply side of insur-
ance, the insurance companies are trying to maximize the expected profits,
π(p, α1, α2) = (1− p) · α1 − p · α2. Since we are going to use the incomes in
two cases, W1 and W2, as the sorting variables2, we can express the profit
function in space of sorting variables. That is,

π = α1 − p · (α1 + α2) = W − (1− p) ·W1 − p ·W2 − p · d.

By assumption, all insurance companies are risk-neutral. The free entry
to the markets will force the expected profit to insurance company to be
zero, and thus

π = 0, or (1− p) ·W1 + p ·W2 = W − d

will be the zero-profit line (ZPL) for the insurance companies. Furthermore,
we notice that the slope of the ZPL is dW2/dW1 = −(1− p)/p. So we know
that the ZPL is downward sloping and that the magnitude of the slope of the
ZPL depends on the risk level of the individuals of getting into an accident.

Definition: The Rothschild-Stiglitz Nash Equilibrium (RSNE) is de-
fined to be a set of insurance contracts such that when consumers choose
contracts to maximize expected utility: (1) no contract in the equilibrium set
makes negative profit for the insurance companies; (2) no contract outside
the equilibrium set, if offered, will make a positive profit for the insurance
companies.

This definition may seem very natural, but it turns out that it is very
restrictive. As for now, we can solve for the first-best solution to the model
with symmetric information. The fair price corresponding to the zero-profit
condition is

p

1− p
=
α1

α2
or p =

α1

α̂2
,

i.e., the price of the insurance should be the same as the subjective probabil-
ity of accidence occurrence. The individuals’ optimization problem becomes

max
α1

pU(W − d− α1 + α1/p) + (1− p)U(W − α1).

often is the so-called “incentive compatibility (IC) constraints,” which essentially says that
agents are truth-telling.

2 In any asymmetric information model, we need at least two sorting variables to work
with. Note that the sorting variables must be something observable by all players and a
good choice of sorting variables will make the interpretation of the model very intuitive.



2.1 Rothschild and Stiglitz (1976) 11

The first order condition is

p · (1/p− 1) · U ′(W − d+ α2)− (1− p) · U ′(W − α1) = 0, or

U ′(W − d+ α2) = U ′(W − α1) or W1 = W2.

Alternatively, we can show that regardless of insurance holding α1, the
individuals’ expected wealth is

p(W − d− α1 + α1/p) + (1− p)(W − α1) = W − pd.

The full insurance α1 = pd can achieve this expected wealth with cer-
tainty, and risk-aversion leads to full insurance, i.e., W1 = W2. That is,
the equilibrium will be the intersection point of the 450 line (so that the
expected income will be certain and equal across states3) and the ZPL with
slope −(1 − p)/p. One such equilibrium is depicted in the following fig-
ure. Note that moving towards northeast would increase the individuals’
iso-utility curve and reduce the insurance companies’ profit level.

 

 

 

 

 

 

 

 

 

Figure 3. Quality-Quantity Pair in an Adverse Selection Model 

 

 

 

 

 

 

 

 

Figure 4. First- and Second-best Solutions in Spence Model 

 

 

 

 

 

 

 

 

Figure 5. Simply Illustration of the State Wealth Space 
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Figure 2.1: State-Wealth Space in Rothschild-Stiglitz Model

Now let’s introduce asymmetry into the model. Assume that each indi-
vidual can be either of two types, high-risk type with pH or low-risk type
with pL, where pH > pL. The population proportion of high-risk types is λ.
Assume further that each individual recognizes his/her own type but the in-
surance companies don’t. The uninformed party, the insurance companies,
is assumed to move first in this model by providing insurance polices for the
informed party to choose from. Let’s denote the average or pooling risk prob-
ability of involving an accident in the population as p ≡ λ · pH +(1−λ) · pL.

3 To get this result, substitute the insurance companies’ zero profit condition into the
first-order condition for customers’ optimization problem.
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The expected utility function will be

Vi(pi,W1,W2) = (1− pi) · U(W1) + pi · U(W2),

where i ∈ {L,H}. We can use the implicit function theorem to find out the
slope of the iso-utility curve as(

dW2

dW1

)i

= −∂Vi/∂W1

∂Vi/∂W2
= −(1− pi) · U ′(W1)

pi · U ′(W2)
.

We know that these iso-utility curves have negative slopes at all points
and for both types. But we would like to know which one is steeper. So we
find out ∣∣∣∣dW2

dW1

∣∣∣∣i=H

−
∣∣∣∣dW2

dW1

∣∣∣∣i=L

=
U ′(W1)
U ′(W2)

pL − pH

pLpH
< 0,

and conclude that the low-risk types have steeper iso-utility curves at each
point on the space of sorting variables. In the same time, we know that the
low-risk types also have steeper ZPLs.

It is intuitive to note that in this model it is the high-risk types are jeop-
ardizing, and thus “bad guys,” the low-risk types in that the latter could
have gotten more favorable insurance contracts if there were no high-risk
types around. However, it is true here and in every asymmetric information
model that the “bad guys” end up getting the first-best solutions in the full
information counterpart. Why? The high-risk types are no better off than
they would be in the absence of low-risk types if there exists a successful
separating equilibrium. So we know the high-risk types will be at the inter-
section point αH of the 450 line and the high-risk ZPL in the equilibrium in
the next figure.

 

 

 

 

 

 

 

Figure 6. A Pooling Equilibrium Is Never a RSNE 

 

 

 

 

 

 

 

 

 

 

Figure 7. A Separating Equilibrium Is Possibly a RSNE 

 

 

 

 

 

 

 

 

Figure 8. Existence of a Separating RSNE 
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Figure 2.2: A Pooling Equilibrium Is Never a RSNE
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Note further that a pooling equilibrium is not possible in this model.
Suppose the contrary is true and the pooling equilibrium is indeed the in-
tersection point α of the pooling ZPL and the high-risk types’ iso-utility
curve through the point αH , in the figure above. Then we find that any
insurance contracts lying between the iso-utility curves of two types to the
right of point α, for example point β that lies below the low-risk ZPL, will
not be interesting to high-risk types yet more attractive to low-risk types
who are currently at point α. Moreover, since this contract attracts only
the low-risk types (a phenomenon also known as “cream-skimming,” as op-
posed to “adverse selection.”), the insurance company provides the contract
β clearly will make positive profit4, violating the condition (2) in the RSNE.
Hence the pooling equilibrium α is not a RSNE.

 

 

 

 

 

 

 

Figure 6. A Pooling Equilibrium Is Never a RSNE 

 

 

 

 

 

 

 

 

 

 

Figure 7. A Separating Equilibrium Is Possibly a RSNE 

 

 

 

 

 

 

 

 

Figure 8. Existence of a Separating RSNE 
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Figure 2.3: A Separating Equilibrium Is Possibly a RSNE

Now let’s look at just the separating equilibrium described in the figure
above. Again, we know the high-risk types will stay at αH . It becomes
natural5 to see that the intersection point αL of the high-risk types iso-utility
curve through point αH and the low-risk ZPL is where the low-risk types
will rest. Is the combination (αL, αH) a RSNE indeed? We need to impose
another constraint here, namely the incentive compatibility constraint. It

4 Note that although the contract β lies above the pooling ZPL, the insurance company
offers it would make positive profit. It may seems initially that it is against the intuition
that moving towards southwest will increase the profits for insurance company, but the
pooling ZPL is not relevant any more here since the contract β, relative to α, attracts
only low-risk types. The pooling ZPL is meaningful only if two types are participating.

5 The contract αL to the low-risk types must satisfy the following three conditions to
qualify for an equilibrium: (1) αL must be on or below the high-risk type iso-utility curve
through αH so that high-risk types won’t mimic; (2) αL must be on the low-risk type ZPL
to ensure that the insurance companies make zero profit by providing the contract αL; (3)
αL must achieve maximum utility level feasible for the low-risk types.
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is basically saying that the low-risk types will be willing to stay at αL and
the high-risk types will be willing to stay at αH , and thus effectively reveal
their true risk types to the insurance companies.

How do we know? We have to compare the separating result with the
pooling result which doesn’t qualify for a RSNE. That is, we need to consider
the location of the pooling ZPL. It turns out that as long as the pooling
ZPL doesn’t intersect the low-risk types iso-utility curve through αL, the
combination (αL, αH) is a RSNE. Let’s consider the case where the pooling
ZPL does intersect the low-risk types iso-utility curve through αL as in the
figure below.

 

 

 

 

 

 

 

Figure 6. A Pooling Equilibrium Is Never a RSNE 

 

 

 

 

 

 

 

 

 

 

Figure 7. A Separating Equilibrium Is Possibly a RSNE 

 

 

 

 

 

 

 

 

Figure 8. Existence of a Separating RSNE 
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Figure 2.4: Existence of a Separating RSNE

In this case, clearly any contracts lying between the pooling ZPL and the
low-risk types iso-utility curve through αL and to the left of the intersection
point of these two schedules, such as point β, will be attractive to both
types since it is to the northeast of two iso-utility curves relevant here. In
the meantime, the insurance company providing the contract β also makes
positive profit because it attracts both types of agents and lies below the
pooling ZPL. Under this circumstance, the combination (αL, αH) is not a
RSNE since the contract β violates the condition (2) in the definition of
RSNE.

It is now time to relate this paper to the Spence paper. How come the
Spence paper offers infinite amount of equilibria6 while this paper provides
only one equilibrium, if it exists at all? It turns out that it’s due to the

6 In the figure where the pooling ZPL doesn’t intersect the low-risk types iso-utility
curve through αL, the Spence corresponding separating equilibria are any contract com-
bination with the same αH and any points below αL on the low-risk types ZPL through
αL.
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difference in setup: although the labor market equilibrium conditionW (y) =
S(y, n) in Spence is similar to the zero-expected-profit condition in R-S,
there are infinite ways to pay wages to the workers in Spence, and workers
are not restricted to pick the wage that maximize the workers’ utility.

Note that in both the Spence model and the R-S model, the uninformed
agent moves the first. In this type of game, the precommittment by the un-
informed is critical. Although there is a strong incentive for the uninformed
agent to re-negotiate the contract with the better-type among the informed
agents, they cannot afford doing so. Otherwise, the worst-type of informed
agents will no longer be willing to take his first-best solution and effectively
spoil the equilibrium outcome.

Another interesting, maybe ironic as well, point is that as more and more
low-risk types individuals exist in the market, the pooling ZPL will be closer
and closer to the low-risk types ZPL and thus it becomes more likely that
the pooling ZPL will intersect the low-risk types iso-utility curve through
the point αL. As a consequence, it is very likely there will be no RSNE
at all. It may seems counter-intuitive at first, but the real reason behind
is that as more and more low-risk types individuals exist in the market,
it becomes harder and harder to adopt a separating equilibrium, i.e., the
cost of separation becomes higher and the pooling equilibrium looks more
attractive.

One important and very realistic lesson from the Rothschild-Stiglitz
model is that de-regulation leads to product differentiation as a pooling
equilibrium doesn’t exist in a competitive market. Here is an example on
the banking industry. Before the de-regulation, banks didn’t have to pay
interest on deposits yet offered cash-management services for free, i.e., banks
used profits from deposits to subsidize the cash-management services. Once
the de-regulation was implemented, this type of bundling practice didn’t
work anymore because many customers who didn’t need cash-management
services switched to banks that offered interest on deposits. Another rel-
evant example is the implementation of AT&T’s latest strategy to bundle
cable services with consumer long distance services, in an apparent attempt
to make up for the ever deteriorating margin on the long distance market.
This strategy failed simply because other companies came along providing
non-bundled services at more competitive prices.

How should we handle an asymmetric information model with more than
two types? We sort those types by adversity. And the worst types will get
the first-best solution in his full information counterpart, and his iso-utility
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curve through that solution will then intersect the ZPL for the next bad
types at the solution for the next bad types, and we worked this way up
until we reach the best types. One thing to note is though when there are
more than two types in the model, it becomes more and more likely that
there will be no RSNE at all due to the higher likelihood that the pooling
ZPL will intersects the higher types iso-utility curves. A continuum of types
would certainly guarantee the non-existence of RSNE.

2.2 Riley (1979)

One of the major results established in Riley’s paper is that if the unknown
parameter θ, that captures the underlying characteristics of the informed
agents, lies in a continuum [θ, θ], then there doesn’t exist a RSNE. As we
mentioned above, it is readily seen that this is the case because the pooling
ZPL will intersect the ZPL of the best types for sure. The natural research
question then becomes: can we refine the RSNE equilibrium concept in such
a way that makes the existence of equilibrium possible?

Definition: A set of offers are Riley Reactive Equilibrium (RRE) if for
any additional offer that generates an expected gain to the deviating agent
i making the offer, there exists another offer that can be made by agent
j that produces positive profits for j and negative profits for i. Moreover,
there exists no further offer such that j can be made to suffer losses.

Here is the translation of the definition. Suppose we have only two types
of agents in the model. If type i were to defect by making an offer different
from the equilibrium solution, then type j could make another offer so that
type i would be surely worse-off than the original equilibrium solution and
type j would be better-off than the equilibrium solution. Moreover, any
other offer couldn’t make type j worse-off than the original equilibrium
solution specified for type j. In retrospection, type i would realize that it’s
not worthwhile to defect in the first place, and thus the original equilibrium
is preserved and called a Riley Reactive Equilibrium.

Theorem: There exists a unique RRE that is the Pareto dominating
member of the set of strongly informationally consistent contracts (i.e., per-
fectly separating ones).

A crucial implication of the Riley’s work is that RRE makes equilibrium
existence possible when RSNE does not exist, but RRE does not change the
equilibrium when RSNE does exist.
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We are going to discuss only the six assumptions used in the Riley’s
paper.
(A1) θ ∈ [θ, θ] for strictly increasing, continuously differentiable f(θ), and
y ∈ [y, y].
(A2) The utility to the informed agent is U(θ; y, p), where θ is the informed
agents’ attribute that is unknown to the uninformed, y is the signal and p is
the price of the underlying product such as wage in the labor market. The
utility to the uninformed agent is V (θ; y). We assume that both U and V
are continuously differentiable.
(A3) U(θ; y, p) is strictly increasing in p, i.e., the higher price, the better-off
the seller will be.
(A4) V (θ; y) > 0, V1(θ; y) > 0 and V2(θ; y) ≥ 0.
(A5) ∂

∂θ

(
−U2

U3

)
< 0, where U2 = ∂U/∂y and U3 = ∂U/∂p.

(A6) ∀θ ∈ Θ, U [θ; y, V (θ; y)] is either strictly decreasing in y or it has a
unique turning point at y∗(θ) which is the utility maximum level of the
signal. Moreover, ∀θ ∈ Θ, we have U [θ; y, V (θ; y)] < U [θ; y∗(θ), V (θ; y∗(θ))],
where y ∈ [y, y] and θ ∈ [θ, θ] as in (A1).

The first part of the assumption (A4) says that all products have positive
values to the buyer. The second part says that a higher value of θ represents
a better product. The third part says that a higher value of signal y will
not be viewed negatively by the buyer. The assumption (A5) is the most
crucial one in this model and we often call it the “single crossing property.”
If we totally differentiate the informed agent’s utility function at a fixed
level w.r.t. y, we have

U2(θ; y, p) + U3(θ; y, p)(dp/dy) = 0, or
dp

dy
= −U2

U3
= −∂U/∂y

∂U/∂p
.

Since U2 < 0 and U3 > 0, we have dp/dy > 0. What the assumption (A5)
says is that ∂(dp/dy)/∂θ < 0, i.e., high-quality sellers have flatter iso-utility
curves in the (p, y) sorting space.

The assumption (A6) is saying that, if U is strictly decreasing in y, the
first-best solution is y∗ = 0. This assumption effectively avoids corner solu-
tion for the separating equilibrium as the upper corner y yields utility level
even less than the worst type’s. Note that if we have multiple dimensional
signals (i.e., more than two types of signals), we don’t need this assumption.

In the Rothschild-Stiglitz context, we have θ ∈ {θH , θL} and a higher
value of θ represents bad attribute. So the lower-risk types have steeper
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slopes in the (W1,W2) space, consistent7 with the assumption (A5).

We can prove that the assumption (A5) implies that Cyn < 0 in the
Spence’s context, but the converse is not true unless the informed is risk-
neutral. First of all, note that the ability level n and wage W in Spence
model are equivalently θ and p in Riley’s notation.

(a) Assumption (A5) in Riley implies Cyn < 0 in Spence.

For the utility function U(n; y,W ) = W (y) − C(y, n), if we totally dif-
ferentiate the iso-utility curve at a fixed level with respect to y, we get the
following,

Wy − Cy = 0, or Cy = Wy.

Since in Riley’s notation we have Wy = dp/dy, we easily get

∂

∂θ

(
dp

dy

)
=

∂

∂n
(Cy) = Cyn < 0, by (A5).

(b) Cyn < 0 in Spence can easily imply (A5) in Riley if the workers are
risk neutral. If workers are risk averse, however, we cannot get the result.
Here is why. Assume that the worker’s utility function is separable and
concave, in the form of

U(n; y,W ) = U [W (y)]− V [C(y, n)].

If we totally differentiating the iso-utility curve with respect to y, we get

U ′Wy − V ′Cy = 0, or Wy =
V ′

U ′Cy,

so that
∂

∂θ

(
dp

dy

)
=

∂

∂n
(Wy) 6= Cyn,

i.e., the condition Cyn < 0 doesn’t imply (A5) in Riley.

7 You don’t think they are really consistent? Recall that we have downward sloping
iso-utility curves in the (W1, W2) space in RS model but upward sloping iso-utility curves
in the (p, y) space here.
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2.3 Ofer and Thakor (1987)

Empirical evidence suggests that when a public firm announces a dividend
payment, there is generally an announcement effect measured by cumulative
abnormal return of between 0.85% and 1.39% on average, yet the cumulative
abnormal return associated with a tender offer of stock repurchase is about
17.75% on average. What’s the difference between a dividend and stock re-
purchase as a signal of the firm value, and why there is such a huge difference
between the impact of these two types of signals? Ofer and Thakor try to
shed some light on this important question from a theoretical perspective.

At time t = 0, a manager who owns α of a firm is given a wage contract
W that is the market value of b shares of stock at t = 0. The wage is
paid out in period t = 1. The manager announces at t = 0 the policy for
paying out cash at time t = 1. The manager may choose to pay dividend d,
repurchase (tender-offer repurchase) stocks worth β of the firm, or both. The
manager is assumed to exclude himself/herself from the stock repurchase
plan, something supported by empirical evidences. The firm has a project
at time t = 0 that will produce interim cash flow at time t = 1 and terminal
cash flow at time t = 2. The interim cash flow is C with probability 1 − ξ
and 0 with probability ξ. The terminal cash flow π̃ is random with mean
π and variance σ2. If the interim cash flow C is realized at time t = 1,
it can be used for either dividend d or repurchase β or both, after paying
the wage W . In the case where the interim cash flow falls short, the firm
is obligated to borrow from outside at a punitive rate R which is greater
than the risk-free rate r. No tax is considered in this model. Investors are
assumed to be risk-neutral and the manager risk-averse.

Before we build up the model, let’s think about what the potential costs
involved in the policy announcement may be. Clearly, the firm is subject
to the distress financing cost should the interim cash flow fall short of the
target, and the manager is subject to a loss of wage from a lower stock price.
In the same time, it is very important to note that the manager also suffers
from another source of cost if the repurchase plan is adopted. That is, the
manager will be exposed to more risk since the self-exclusion from the tender
offer makes the manger have a larger share, α/(1−β), of a more risky firm,
for some of the existing cash flow is used to buy back shares and thus the
weight on the risky terminal cash flow is even larger.

One obvious difference between the model in this paper and the Riley
model is that here we are discussing two signals, dividend and repurchase,
whereas the Riley model has only one signal. The immediate benefit of
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having two signals is that we can now evaluate the simultaneous signals
in Pareto optimal order. In both of these two papers, there is only one
unknown attribute discussed. If we were to extend the number of attributes8,
it will become very hard to rank the cross-attribute combinations, let alone
justifying the rank.

Now let’s introduce the information asymmetry. The firm could be either
a good type or a bad type. For simplicity9, we assume that ξg = 0, ξb = 1,
πg > πb > 0 and σ2

g = σ2
b . So here the good type firm will have better

cash flows at both periods. The manager knows the firm type and thus
its interim cash flow but the investors don’t. Moreover, πg, πb, σ

2
g , σ

2
b are

public information. The manager is assumed to have mean-variance utility,
Ei − k · σ2

i for i ∈ {g, b}, where Ei is the manager’s expected payoff from
wage and market value of stocks held at time t = 0.

Proposition 1: The first-best solution for the manager’s announcement
is d∗ = 0 and β∗ = 0, provided that 0 < ξg < ξb < 1. The second-best
solution for the manager’s announcement is a Riley Reactive Equilibrium
(RRE), i.e., a set of signals and prices Λ ≡ {(d∗g, β∗g , V ∗

g ), (d∗b , β
∗
b , V

∗
b )} such

that for any additional set S that produces profits for investors (e.g. buy the
stocks for less than its worth), when S∪Λ is offered, there exists an additional
set S ′ such that S generates losses for investors and each contract in S ′ is
strictly profitable for the manager when S ∪Λ∪S ′ is offered. Moreover, the
set S ′ also makes the manager immune to losses.

Why would the manager’s first-best solution be to announce no dividend
and no stock repurchase? Because there is a positive probability that the
firm has to borrow at a punitive rate R under either dividend or repurchase
policy, and particularly the repurchase policy would add additional cost
to the manager due to a higher exposure to a riskier company after the
repurchase. Note that the conditions in a RRE would make the possible
defector, the uninformed investors in this case, feel that it’s not worthwhile
to defect in the first place and thus the equilibrium is preserved.

One important feature shared by all models we have studied so far is
that the uninformed agent make a pre-commitment to abide by the contract

8 For a nice attempt to extend the number of unknown attributes, read Baron and
Heyesson (1982), “Regulating a Monopolist with Unknown Costs,” Econometrica.

9 Had we specified a different set of values for ξg and ξb while keeping the order ξg > ξb,
the results won’t change except that we would have to carry out the expected interim cash
flow for two types throughout the model, not like C and 0 under our assumption here.
We insist imposing ξg > ξb so that the good type firm is unambiguously better than the
bad type.
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agreed. We will notice later on that in models with informed agent moving
first, the pre-commitment by the uninformed agent is not necessary.

Proposition 2: If no repurchase is allowed, then there exists d > 0 such
that d∗g > 0, d∗b = 0 as long as d∗g ≤ C −Wg.

The condition d∗g ≤ C − Wg makes sure that the good type firm will
not incur distress financing cost, and thus the total signaling cost is zero. If
the bad-type firm decides to mimic the signal, however, it will surely incur
positive signaling cost. So d∗g > 0, d∗b = 0 would be a separating equilibrium.

Note that for given level of πg − πb, the price effect of dividend policy is
zero for the good type firm because the good type firm has enough interim
cash flow to finance the dividend payment d∗g, and the swap between cash
flow and dividend won’t change the firm’s valuation. By mimicking the good
type firm’s dividend policy, the bad type firm’s stock will have a temporary
jump from the cross-sectional average price at t = 0 but fall sharply at t = 1.
In the meantime, the signaling cost the bad type firm incurs will increase
as d∗g becomes higher. Therefore, as long as d∗g is high enough, the bad type
firm won’t afford mimicking the good type firm’s dividend policy.

Proposition 3: As long as d∗g ≤ C −Wg, we have β∗g = β∗b = 0.

Why both types of firms won’t choose the repurchasing plan? Because
the repurchase plan expose managers to additional risk due to the larger
share of the riskier assets they hold. As a matter of fact, the magnitude of
πg −πb determines whether d∗g ≤ C−Wg. Using the incentive compatibility
constraint, we find that ∂d∗g/∂(πg − πb) > 0.

Proposition 4: If πg � πb, then a repurchase plan is optimal, possibly
in conjunction with a dividend policy.

That is to say, if πg is sufficiently better than πb, so that the bad type
firm won’t afford mimicking, and more importantly if the amount the good
type firm spent on repurchase is less than C −Wg, then the good type firm
manager will do both the repurchase plan and dividend policy, i.e., β∗g > 0
and d∗g > 0.

Since we have two simultaneous signals available in this case, we can
compare the relative efficiency of the two signals, from both the perspective
of aggregate signaling cost and that of marginal signaling cost.

Let’s discuss the effectiveness of the dividend policy at first. (1) When
d∗g < C −Wg, the dividend policy will do a good job of separating types
in terms of not only aggregate signaling cost, but marginal cost as well.
The former is true because the aggregate signaling cost is zero for the good
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type and positive for the bad type. The latter is true because the marginal
signaling cost is also inversely related to firm’s quality. (2) When d∗g >
C −Wg, the dividend won’t do an as efficient job as in the previous case.
Both types of firms will be subject to distress financing cost if they adopt
the policy d∗g, although the aggregate signaling cost is higher for the bad
type firm than the good type firm. Moreover, the marginal signaling cost is
the same across two types.

How effective is a repurchase plan to separate types then? The signaling
cost is always higher in both the aggregate terms and the marginal terms for
the bad type firm than those for the good type firm, if a stock repurchase
plan is adopted. The reason behind is that despite the same risk across two
types of firms, i.e., σ2

g = σ2
b , when a repurchase plan is adopted, the good

type firm is worth more than the bad type firm on average, i.e., πg > πb.
Therefore, the additional cost to the manager from a repurchase plan will
be higher in aggregate terms in the case of a bad type firm than in the case
of a good type firm. Since a higher β∗g will increase the effective share of
the manager in the firm and thus a higher risk exposure, the signaling cost
of a repurchase plan will be also inversely related to the firm quality in the
marginal sense.

Once we have developed the idea that a stock repurchase plan is a more
powerful, or efficient, signal than the dividend policy, it is easy to realize
that if the amount the good type firm spent on the stock repurchase plan is
less than C −Wg, then the good type firm can use the difference to impose
the additional signal of a dividend policy so that the mimicking cost will
be so huge as to deter the bad type firms from deviating from its first-best
solution, i.e., sending zero-valued signals.

Proposition 5: If the amount the good type firm spent on repurchase
is greater than C −Wg while πg � πb, then there will be no dividends paid
out at all.

The reasoning behind the proposition above is fairly simple. Even the
more efficient signal, the stock repurchase plan, will force the good type
firms to borrow from outside at a punitive rate under this special case. The
use of a dividend policy could only do an inferior job to separate the two
types and thus is not something sensible to do.

As the figure above depicts, when the mean difference of terminal cash
flows across two types locates in region I, the good type firm sends only
the signal of dividend policy; in region II, the good type firm sends both
signals; and in region III, the good type firm uses only the signal of stock
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Figure 9. When to Use Dividend/Stock Repurchase? 

 

 

 

 

 

 

 

 

 

Figure 10. A Separating Equilibrium that is both RSNE and RRE 

 

 

 

 

 

 

 

 

 

 

Figure 11. A Separating Equilibrium that is not RSNE but not RRE 
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Figure 2.5: When to Use Dividend/Stock Repurchase?

repurchase.

Now let’s depict the equilibrium in the following graph for the case where
πg − πb is not very large. We use the market value of the firm at time
t = 0, Vi(d), i ∈ {g, b}, and the dividend policy announced as the two sorting
variables in this model.
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Figure 2.6: A Separating Equilibrium that is both RSNE and RRE

It is clear that the northwest direction is the direction of increasing utility
level for both types of firms and that any point below the appropriate market
value line will bring positive profits to investors. Since the signaling cost
for the good type firm is positive for d > C −Wg, both the utility for the
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manager and the market value of the firm should fall, hence the iso-utility
curve diverges from the market value line.

Here are a couple of quick facts. First of all, as we have already found
many times by now, the bad type firm occupies point A which is its first-
best solution. Second, the bad type iso-utility curve (ISOb) through point
A intersects the good type market value line (MV Lg) at point B. Third,
the highest feasible iso-utility curve for the good type (ISOg) that intersects
the MV Lg is determined correspondingly. It is obvious that any point along
the ISOg and between point B and point C will be an equilibrium point for
the good type firm. We can safely say that the combination of (A,B) is a
RSNE and thus RRE.
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Figure 2.7: A Separating Equilibrium that is not RSNE but RRE

Let’s consider the case where πg−πb is sufficiently large. Let’s go through
the process of determining an equilibrium again. Without any question, the
bad type will occupy its first-best solution, point A. Then the ISOb through
point A intersects the MV Lg at point C. The highest feasible ISOg is
determined correspondingly; it goes through point C and shares a portion
with ISOb. The issue at hand now is that we cannot say the combination
(A,C) is a RSNE any more because the pooling MPL intersects the ISOg

through point C. To see why the combination (A,C) is not a RSNE, we take
a note of the possible pooling equilibrium10 point D that the bad type firm

10 Why we should take care of the pooling equilibrium here, as we did before? Because
we know the combination (A, C) is the best separating equilibrium, and the only type
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manager could propose and defect from the combination (A,C). Clearly the
point D gives both types of firm managers a higher utility level, and also
makes investors earn positive profit because it locates under the pooling
market value line. The point D violates the condition (2) in the definition
of RSNE and thus disqualifies the combination (A,C) as a RSNE.

However, we would argue that the combination (A,C) is a Riley Reactive
Equilibrium in the following sense. Once the bad type firm manager defects
and proposes the point D, the good type firm manager could counter-offer
with the point E. The point E makes the good type firm manager better off
than the point D and attracts only the investors for the good type firm in
that the point E lies way above the MV Lb and below the MV Lg. The fact
that only investors for the bad type firm will be left at the point D drives the
investors for the bad type firm leave the point D as well, because the pooling
MV L is not relevant for point D any more and the point D lies above the
MV Lb. Given that we have established the point E will make both manager
and investors for the good type firm better-off and make investors for the
bad type firm worse-off, and the fact that there is no other point that will
make both manager and investors for the good type firm worse-off11 than
at the original separating equilibrium (A,C), the defector can only burn
his/her own hands without being able to fight back. Therefore, the bad
type firm manager won’t defect from (A,C) and propose the point D in the
first place. Therefore, (A,C) is preserved as a RRE.

One lesson from this exercise is that the privilege of defection is always
reserved for the first-mover, the uninformed investors in this case. If the
informed agents are allowed to move first, then the defector will be the
uninformed but again the privilege of defection is on the side of the informed
agents.
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Chapter 3

Game Theory

3.1 Some Definitions around a Game

3.1.1 Information Condition

Perfect Information: Each player knows where he’s in the game, i.e., his
information set at each stage contains of only one element. It is also known
as “types and moves known.” Complete Information: Player 2 knows that
player 1 plays before him, but doesn’t know player 1’s actions. It is also
known as “types are known and moves are unknown.” Incomplete Informa-
tion: Player 2 doesn’t know which of players 1a or 1b moves, and doesn’t
know the action taken before him. It is also known as “types and moves are
unknown.”

3.1.2 Extensive Form vs. Strategic Form

An extensive form of a game requires the following: (1) physical order of
play; (2) choice available to each player when it is his term to move; (3) rules
to determine who moves when; (4) information a player has when he has
to move; (5) payoffs to players as a function of moves; (6) initial conditions
when the game starts. A strategic form, or normal form, of a game applies
all the game information in a payoff matrix.

It is known that every game in extensive form can be reduced to one
in a strategic form. Although many extensive forms reduce to the same
strategic form, a given extensive form reduces to only one strategic form.
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Note that some information will be lost upon reducing an extensive form
into a strategic form.

Here are some notations on an extensive form. There is a finite set T of
nodes t with a binary relation ¡ on T that represents precedence. The set of
initial nodes is denoted as W , i.e., W = {t ∈ T |t has no predecessors}. The
set of terminal nodes is denoted as Z, i.e., Z = {t ∈ T |t has no successor}.
The set of decision nodes is denoted as X, i.e., X = T\Z. The finite set of
activities available to players is denoted as A. Each of the N players has a
type τ . The history information set up to the current time is denoted as H.
The set of feasible actions at node x ∈ X is denoted as α(x). The collection
{T,<,A, α,N, T,H} is an extensive form. If we add the following two things
to the game: (1) player’s utility to terminal nodes; (2) probabilities to initial
nodes, then we get an extensive game.

3.1.3 Strategy

Strategy πi for player i assigns to each information set h ∈ H i a probability
measure on the action set A(h), i.e., πi : Ai → [0, 1]. If these probabilities
are degenerative, i.e., some actions have a probability of one, they are called
pure strategies; otherwise, they are called mixed strategies. Although there is
a slight difference between a “mixed strategy” and a “randomized strategy,”
we are going to use them interchangeably in this course.

3.1.4 Subform vs. Subgame

A subform of an extensive game is a collection of nodes T̂ ⊆ T , together
with precedence relation ¡, types τ ∈ T , finite set of actions A, finite set
of feasible actions α(x) at node x, and the history information set H, all
defined on T̂ .

A proper subform is a subform T̂ consisting solely of some node x and its
successors. In this case, the initial node is a singleton, i.e., the probability
that the subform starts at node x is one. In contrast, a proper subgame
requires two things: (1) it is a proper subform (with a singleton initial node);
(2) the subgame “inherits” all of the structure from the original game.
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3.1.5 A Signaling Game

There are two players, A and B, in the signaling game. Player A, as the
informed agent, moves first and the uninformed agent, player B, moves
second. Player A’s type τ ∈ T is drawn according to some probability
distribution ρ over T that is common knowledge. Player B’s type doesn’t
matter here as long as every player’s payoff function is common knowledge.

Player A sends player B a message m ∈M , where M is a finite set and
we have M(τ) in general. Player B then chooses a response r ∈ R, where
R is also a finite set. Denote as T (m) the set of types that have available
message m. The utility of player A is u(m; τ, r) and that of player B is
v(r; τ,m).

The strategies for player A is φ(m; τ) = Pr(τ will send message m), and
the strategies for player B is π(r|m) = Pr(B will repond to m with r). Be-
fore the player A’s move, player B has a belief about the player A’s type;
it is the common knowledge ρ(τ). After observing the message sent from
player A, player B has a posterior belief about the player A’s type, the
probability distribution µ(τ |m) over T (m), where T (m) is the set of types
of player A that could have sent m.

Denote as BR(µ,m) the set of best responses by player B to message
m, given posterior beliefs µ. Then it is obvious that

BR(µ;m) = arg max
r∈R(m)

∑
τ∈T (m)

v(r; τ,m) · µ(τ |m).

If we allow the existence of mixed strategies in response to multiple
r ∈ BR(µ;m) that produce the same expected payoff for player B, then we
could denote the mixed best responses as MBR. From the definition above,
it is easy to see that best responses are equivalent to posterior beliefs.

3.2 Nash Equilibrium

3.2.1 Definition of Nash Equilibrium

Note at first that a Nash Equilibrium amounts to specifying the strategies
for all players involved that will sustain the equilibrium outcome.

In our signaling game above, player A’s strategy φ is: given player B’s
strategy π, each type τ of player A evaluates the utility from sending message
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m and receiving response r as∑
r∈R(m)

u(m; τ, r) · π(r|m),

and φ(m|τ) puts weight on the message m if and only if it is among the
maximizing m’s in this expected utility. Similarly, player B’s strategy π is:
given player A’s strategy φ, for any message m with positive probability by
player A of some type τ , player B uses Bayes’ Rule to compute the posterior
assessment that m comes from τ ∈ T (m) as

µ(τ |m) =
Pr(τ,m)
Pr(m)

=
ρ(τ) · φ(m|τ)∑

τ ′∈T (m) ρ(τ ′) · φ(m|τ ′)
.

The Nash Equilibrium (N.E. henceforth) condition is that for all message
m sent by player A of some type τ with positive probability, every response
r must satisfy

π(r|m) ∈MBR(µ(τ |m);m).

A few points to note here. (1) A N.E. requires Bayesian rationality in
equilibrium; (2) A N.E. imposes no restrictions on what player B should do
when observing a message m with zero probability1. That is, the N.E.
condition stipulates the strategies on the equilibrium path yet poses no
restrictions on the strategies off the equilibrium path. As we will see soon
in an effort to refine the N.E. concept, player B can pose threat regarding
off-equilibrium strategies so as to sustain the N.E. outcome.

3.3 Fundamental Existence Theorem

For any strategic form game in which the set of players and the set of
possible actions are all finite, there exists at least one Nash Equilibrium
in randomized strategies. Moreover, whenever at least one player has a
dominant strategy, there exists at least one pure-strategy Nash Equilibrium;
if every player has a dominant strategy, there exists a unique pure-strategy
Nash Equilibrium.

1 If player B observes a message with zero probability, i.e., Pr(m) = 0, or Στ ′∈T (m)ρ(τ ′)·
φ(m|τ ′) = 0

then he cannot get the posterior belief appropriately using the Bayes’ rule. The game
designer has to specify the posterior beliefs for player B.
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For example, the strategic form below produces no pure-strategy N.E.. It
is assumed henceforth that the row player is player 1 and the column player
is player 2. The mixed-strategy N.E. is π1(T ) = 3

4 , π1(B) = 1
4 , π2(L) =

1
2 , π2(R) = 1

2 . Note that the expected payoffs for two players under the
mixed-strategy N.E. are u1 = 0 and u2 = 0. Although the pure-strategy
(T,L) is not a N.E., it has the same payoff as the one under the mixed-
strategy N.E.

L R
T (0, 0) (0,−1)
B (1, 0) (−1, 3)

As a matter of fact, if we replace the payoff cell at (T,L) with (a1, a2),
(B,L) with (b1, b2), (T,R) with (c1, c2), and (B,R) with (d1, d2), then the
general solution for a mixed-strategy N.E. is

π1(T ) = d2−b2
a2+d2−b2−c2

, π1(B) = a2−c2
a2+d2−b2−c2

,

π2(L) = d1−c1
a1+d1−b1−c1

, π2(R) = a1−b1
a1+d1−b1−c1

.

And the expected payoffs are u1 = a1d1−b1c1
a1+d1−b1−c1

, u2 = a2d2−b2c2
a2+d2−b2−c2

.

3.3.1 Problems with Nash Equilibrium

Two of the most common problems with N.E. are (1) non-uniqueness and (2)
inefficiency. Let’s take a look at these problems in the following examples.

L R
T (5, 5) (0, 6)
B (6, 0) (1,1)

In the game above, we have one unique N.E. (henceforth indicated by
payoffs in bold face) that is not Pareto optimal, compared to the (T,L)
combination.

L R
T (2,1) (0, 0)
B (0, 0) (1,2)

In the game above, we have two N.E.’s (in bold face), instead of one
unique N.E.
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3.3.2 Roadmap for Refining Nash Equilibrium

There have been three routes of refining N.E., as indicated in the following
map. Before we focus our attention in the next section on the second route,
i.e., “Sequential Rationality,” we would briefly explain the first route below.

 

 

 

 

 

 

 

 

 

 

Figure 12. Roadmap for Refining Nash Equilibrium 

 

 

 

 

 

 

 

 

Figure 13. One Example of Sub-game Perfection 

 

 

 

 

 

 

 

 

 

Figure 14. One Example of Sequential Equilibrium 
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Figure 3.1: Roadmap for Refining Nash Equilibrium

Using the conventional two-player strategic form as

L R
T (1,9) (1, 9)
B (0, 0) (2,1)

we end up with two N.E.. Notice that the strategy L is weakly dominated
by the strategy R. If we adopt the first route, eliminating the (weakly)
dominated strategies, of refining N.E., we reach only one N.E., (B,R). This
is certainly helpful. However, the elimination of (weakly) dominated strate-
gies doesn’t always lead to Pareto efficient equilibrium. For example, the
following two-player strategic form

L R
T (5,5) (0, 5)
B (5, 0) (1,1)

has two N.E. once again. If we use the elimination of (weakly) dominated
strategies, we end up with the (B,R) N.E., which is Pareto inferior to the
(T,L) N.E.
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Moreover, the sequence in which we eliminate dominated strategies may
affect the final outcome when weakly dominated strategies are eliminated,
but does not matter when strictly dominated strategies are eliminated. For
example, the following strategic form

x2 y2 z2
x1 (3, 3) (0, 3) (0, 0)
y1 (3, 0) (2, 2) (0, 2)
z1 (0, 0) (2, 0) (1, 1)

would lead to different outcomes if we use different sequences of eliminating
dominated strategies.

3.4 Subgame Perfection

A subgame qualifies to be a proper subgame if the following two conditions
are met: (1) the initial node at which it is the player’s turn to move is
a singleton; (2) subgame inherits all of the structure of the original game.
According to Selten, every strategy π is subgame perfect if for every proper
subgame, the strategy π, restricted to the subgame, constitutes a Nash
Equilibrium.

Let’s consider the following game of extensive form.

 

 

 

 

 

 

 

 

 

 

Figure 12. Roadmap for Refining Nash Equilibrium 
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Figure 14. One Example of Sequential Equilibrium 
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Figure 3.2: One Example of Sub-game Perfection

Here we have two pure-strategy N.E., {A, r} and {L, l}. But the first
N.E. is less plausible in that for player 2 the strategy l weakly dominates
the strategy r. So the elimination of weakly dominated strategies could
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help us to reach one unique N.E. {L, l}. Yet we note that in this game,
the only proper subgame is the whole game itself. That is, the N.E. {A, r}
is also subgame perfect. Why the notion of “subgame perfection” didn’t
help us here? It is precisely because of the nature of the information set
in the game; the only proper subgame is the whole game itself. Note that
generally “subgame perfection” won’t help much in presence of information
uncertainty.

3.5 Sequential Equilibrium

Note that “Sequential Equilibrium” is a subset of “Subgame Perfection Nash
Equilibrium” which is a subset of “Nash Equilibrium.” To require a Nash
Equilibrium to be a “Sequential Equilibrium” we need to add the require-
ment that for every message m sent with zero probability, i.e.,

∀m such that
∑

τ∈T (m)
ρ(τ) · φ(m|τ) = 0,

there must be a probability distribution over types τ(m), written as µ(τ |m),
such that

π(r|m) ∈MBR(µ(τ |m);m),

or if u(m; τ, r) is the utility of type τ from defecting with m when r is the
(pure) best response of player B, given some belief µ about player A’s type,
then

u(m; τ, r) ≤ u∗(τ),

for all τ ∈ T (m) and the particular belief structure chosen in light of the
out of equilibrium move.

The translation is that once player B observes a message m that is out of
the equilibrium path, player B forms a posterior belief µ(τ |m) about player
A’s type τ . Player B then sends back a best response r based upon the
out of equilibrium path belief µ(τ |m). The fact that the player A’s out of
equilibrium message m and the player B’s response r to out of equilibrium
moves makes the defector, player A, not better-off will sustain the original
equilibrium as a Sequential Equilibrium (S.E.).

Application Rule: If we want to establish a sequential equilibrium,
we need to specify only one out-of-equilibrium-path belief for player B that
will deter player A from defecting, i.e., u(m; τ, r) ≤ u∗(τ) hold. On the
other hand, if we want to prove that one N.E. is not S.E., we need to make
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sure that none of out-of-equilibrium-path beliefs for player B will make
u(m; τ, r) ≤ u∗(τ) hold.

Properties of S.E.: (1) For every extensive form game with finite
players and strategies, there exists at least one S.E.; (2) If (µ, π) is a S.E.,
then π is subgame perfect. When we are dealing with signaling games with
single crossing property, the concept of “Bayesian Perfect Nash Equilibrium”
is the same as the concept of “Sequential Equilibrium.” But note that under
general terms, these are two different concepts.

3.6 Applications to Sequential Equilibrium

3.6.1 One Simple Game
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Figure 14. One Example of Sequential Equilibrium 
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Figure 3.3: One Example of Sequential Equilibrium

As we have discussed before, there are two N.E. in this game, namely
(T,L) and (B,R). Note that the notion of “subgame perfection” can help
us to remove the N.E. (T,L) already. Similarly, we can also use the concept
of “sequential equilibrium” to remove the N.E. (T,L). How? Suppose that
the N.E. (T,L) is a S.E., then a defection by player 1 into playing B will
force the player 2 to play his optimal response, that is R. According to the
concept of S.E., the player 1’s defection into Band player 2’s best response
R should make player 1 no-better-off relative to the equilibrium outcome
(T,L), a fact obviously violated by the strategy (T,L). Hence, the N.E.
(T,L) is not a S.E. On the other hand, the N.E. (B,R) is a S.E. in that a
defection by player 1 into playing T will cause player 1 worse-off for sure.
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Figure 15. Another Example of Sequential Equilibrium 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Is Sequential Equilibrium Stringent Enough? 

 

 

 

 

 

 

 

 

 

Figure 17. Spence Model with Two Types of Workers 
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Figure 3.4: Another Example of Sequential Equilibrium

3.6.2 Another Application

There are three players and two pure-strategy N.E. for this game, namely
(x1, x2, x3) and (z1, y2, y3).

(Q1) Why is (x1, x2, x3) a N.E.? Because given (x1, x2), x3 is the best
response for player 3; given (x1, x3), x2 is the best response for player 2;
given (x2, x3), x1 is the best response for player 1. Is (x1, x2, x3) a S.E.?
Yes, because the only possible defector in this equilibrium is player 1 whose
payoff is at the maximum level when player 1 doesn’t defect. The fact that
the only possible defector won’t defect preserves the equilibrium (x1, x2, x3)
as a S.E.

(Q2) Why is (z1, y2, y3) a N.E.? Because given (y2, y3), z1 is the best
response for player 1. Is it also a S.E. then? It is a bit tough in this case.
We are going to prove that it is not a S.E. as follows.

Suppose that player 1 defects. Player 2 knows that player 1’s action is
out of equilibrium, but not sure which of x1 and y1 was played. Let player
2’s belief about the action of player 1 be that it assigns p2 to action x1

and 1− p2 to action y1. We impose a crucial assumption here that there is
no correlation in defection. That is to say, player 3 won’t defect from the
equilibrium as a result of player 1’s defection although player 3 knows player
1 defected. Player 2’s expected payoff, in response to y3, is:

u2(x2; ẑ1, y3) = p2 · 0 + (1− p2) · 3 = 3− 3p2;
u2(y2; ẑ1, y3) = p2 · 1 + (1− p2) · 1 = 1.

Player 2’s best response to (ẑ1, y3) will be to play x2 if p2 ≤ 2
3 and to



3.6 Applications to Sequential Equilibrium 37

play y2 otherwise. (Note that here ẑ1 means any action other than z1.)

Moreover, when player 1 defected, player 3 cannot tell whether or not
player 2 defected, so player 3 would assume that player 2 doesn’t defect by
the assumption of no correlation in defection. Let player 3’s belief about
action of player 1 be that it assigns p3 to x1 and 1 − p3 to y1. Then the
expected payoff for player 3, in response to y2, will be:

u3(x3; ẑ1, y2) = p3 · 3 + (1− p3) · 0 = 3p3;
u3(y3; ẑ1, y2) = p3 · 1 + (1− p3) · 1 = 1.

Player 3’s best response to (ẑ1, y2) will be to play x3 if p3 ≥ 1
3 and to

play y3 otherwise.

Note that in dealing with Sequential Equilibrium in the case of more
than two players, a Sequential Equilibrium would require that the updated
beliefs upon defection have to be shared by all non-defectors. In this case, it
says that both player 2 and player 3 share the same belief, i.e., the common
probability p(x1) that player 1 played x1.

(a) Suppose that the common belief is such that p(x1) ≤ 1
3 , then player

2 will choose the best response x2 and player 3 will choose the best response
y3. In this case, the payoff vector is (0, 0, 0) if player 1 defects with playing x1

and (2, 3, 0) if player 1 defects with playing y1. Comparing to the equilibrium
payoff (1, 4, 4), player 1 will surely defect with playing y1.

(b) Suppose that the common belief is such that 1
3 < p(x1) < 2

3 , then
player 2 will choose the best response x2 and player 3 will choose the best
response x3. In this case, the payoff vector is (4, 2, 2) if player 1 defects with
playing x1 and (2, 2, 2) if player 1 defects with playing y1. Comparing to the
equilibrium payoff (1, 4, 4), player 1 will surely defect with playing x1.

(c) Suppose that the common belief is such that p(x1) ≥ 2
3 , then player 2

will choose the best response y2 and player 3 will choose the best response x3.
In this case, the payoff vector is (0, 0, 3) if player 1 defects with playing x1

and (2, 0, 0) if player 1 defects with playing y1. Comparing to the equilibrium
payoff (1, 4, 4), player 1 will surely defect with playing y1.

Concluding from the cases above, we see that regardless of the common
belief, player 1 will always defect and thus the equilibrium (z1, y2, y3) is not
a S.E.
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3.7 Is Sequential Equilibrium Stringent Enough?

While Sequential Equilibrium is a good refinement to Nash Equilibrium, it
still leaves room to some nonsensible equilibrium outcomes. Let’s take a
look at the following game of extensive form, which has two pooling S.E.,
namely (R,D) and (L,U).

 

 

 

 

 

 

 

 

Figure 15. Another Example of Sequential Equilibrium 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Is Sequential Equilibrium Stringent Enough? 

 

 

 

 

 

 

 

 

 

Figure 17. Spence Model with Two Types of Workers 
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Figure 3.5: Is Sequential Equilibrium Stringent Enough?

(Q1) Why is (R,D) a S.E.? First of all, we need to show that it is a
N.E. Since all types of player 1 will play R, player 2’s posterior belief about
types of player 1 is the same as the priors. The expected payoff for player
2, in response to R, is:

u2(U ;R) = 3
8 · 2 + 1

4 · 2 + 3
8 · (−3) = 1

8 ;
u2(M ;R) = 3

8 · 0 + 1
4 · 3 + 3

8 · (−2) = 0;
u3(D;R) = 3

8 · 2 + 1
4 · (−1) + 3

8 · 0 = 1
2 .

Clearly, player 2’s best response will be D, corresponding to player 1’s
move R. Also note that given player 2’s strategy of moving D, player 1’s
move L is dominated by move R. Hence (R,D) is a N.E.

To show that (R,D) is a S.E., we need to specify beliefs2 for player 2 in
response to player 1’s defection. The only defection possibility is that player

2 Once again, note that when making an equilibrium be a Sequential Equilibrium, we
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1 plays L. If we specify that player 2 believes that player 1 who plays L is
of type C for sure, i.e. µ(τ1 = C|L) = 1, then player 2’s best response will
be D. As we mentioned before, when player 2’s strategy is to play D, player
1’s move L is dominated by move R. Therefore, no type 1 will defect and
the equilibrium (R,D) is sustained as a S.E.

(Q2) Why is (L,U) a S.E.? Using the similar technique to find out
the expected payoff, we can easily verify that (L,U) is a N.E. To show that
(L,U) is a S.E., we can specify that µ(τ1 = A|R) = 1 and let player 2’s move
be U . Consequently, all types of player 1 have payoff of 0 from defection
instead of 2 at equilibrium. Therefore, (L,U) is a S.E.

But among these two S.E., we claim that (R,D) is not economically
sensible. Why? In this equilibrium, type C of player 1 will never defect
from its highest payoff choice. Since type C of player 1 won’t ever defect,
player 2 notices this fact and thus concentrate his beliefs on type A and
B. Player 2 will choose U in response3 to the observance of the out of
equilibrium signal L that is believed to be sent from either type A or B.
Given player 2’s response U , types A and B of player 1 will defect for sure
because of higher payoff relative to their respective equilibrium payoffs. To
redress this issue and eliminate (R,D) as a sensible equilibrium, we have
the next refinement to N.E., i.e., Cho-Kreps’ “Intuitive Criterion.”

3.8 Cho-Kreps’ Intuitive Criterion

A sequential equilibrium fails the Intuitive Criterion if there exists an out
of equilibrium message m′ and a proper subset J(m′) of T such that:

(1) ∀τ ∈ J(m′) and ∀r′ ∈ BR(T ,m′), u∗(τ) ≥ u(τ,m′, r′); and

(2a) ∃τ ′ ∈ T\J(m′) s.t. u∗(τ ′) < u(τ ′,m′, r′) ∀r′ ∈ BR(T\J(m′),m′).

Condition (1) states that types τ ∈ J(m′) will never defect under all
beliefs regarding all types. Condition (2a) states that for all beliefs regarding
the defection candidate group, there exists at least one defection candidate
who would be better off by defecting from the equilibrium.

need to specify only one belief for player 2 in observance of the zero probability event, i.e.,
out of equilibrium move by player 1, that make player 1 not defect.

3 Note that once the defection is observed, don’t update player 2’s beliefs using Bayes’
rule because the priors won’t matter by now. Although we discard the priors in this case,
“Perfect Sequential Equilibrium” would pick up the priors and update player 2’s belief
anyway.
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A sequential equilibrium also fails the Intuitive Criterion if condition (1)
holds and condition (2a) is replaced by the following condition:

(2b) ∃τ ′ ∈ T\J(m′) s.t. u∗(τ ′) < min
r′∈BR(T\J(m′),m′)

u(τ ′,m′, r′).

This condition (2b) says essentially the same thing as condition (2a).
Let’s consider one member of the defection candidate group. If the equilib-
rium payoff for this member is less than the minimum among all payoffs for
him under all best responses (i.e., beliefs regarding the defection candidate
group), then this defection candidate will end up defecting, and thus the
equilibrium fails Intuitive Criterion.

Application Rule: Step 1: find out the types J(m′) that will never
defect under all beliefs regarding all types. At two polar cases, if it turns out
that J(m′) = ∅ then the equilibrium passes the Intuitive Criterion trivially
since Step 1 cannot be carried out; and if it turns out that J(m′) = T
then the sequential equilibrium passes the Intuitive Criterion since no type
will ever defect and thus it is useless to proceed further. Step 2: if there
exists at least one defection candidate who would benefit from defection
under all beliefs regarding the defection candidate group, then the sequential
equilibrium fails the Intuitive Criterion.

(Q1) As an application, why does the sequential equilibrium (R,D) fail
the Intuitive Criterion? Step 1: Let’s find out the types of player 1 that
will never defect. As we mentioned before, J(m′ = L) = {C}. Step 2: If
at least one of the remaining types {A,B} will defect under all beliefs, then
the sequential equilibrium is said to fail the Intuitive Criterion. In this case,
player 2’s best response to m′ = L is U for T\J(m′ = L) = {A,B} and
this response U surely makes both types A and B better-off relative to their
respective equilibrium payoffs. Therefore, both types will defect and thus
the sequential equilibrium (R,D) fails the Intuitive Criterion.

(Q2) We may also ask ourselves why does the other sequential equilib-
rium (L,U) pass the Intuitive Criterion? Step 1: Let’s find out the types
of player 1 that will never defect under this circumstance. If type A defects
then he will receive 0 units of payoff regardless of player 2’s response, which
is worse-off than his equilibrium payoff of 2 units. Both type B and C are
hopeful of benefiting from a possible defect, so we have J(m′ = R) = {A}.
Step 2: We need to find out the best response set for player 2 for all possible
defection candidates, T\J(m′ = R) = {B,C}. Denote as p(B) player 2’s
assessment of the probability that the defector is type B. His assessment
of the probability that the defector is type C is 1 − p(B). The player 2’s
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expected payoff is then:

u2(U ;R) = p(B) · 2 + [1− p(B)] · (−3) = 5p(B)− 3;
u2(M ;R) = p(B) · 3 + [1− p(B)] · 2 = 5p(B)− 2;
u2(D;R) = p(B) · (−1) + [1− p(B)] · 0 = −p(B).

Clearly, U is dominated by M in this case and thus the best response
set for player 2 is BR(T\J(m′ = R),m′ = R) = {M,D}. Player 2 will play
M if p(B) > 1

3 and play D otherwise.

Suppose that p(B) > 1
3 holds, then player 2’s best response is to play

M , and the payoffs for B and C are 4 and 1, respectively. Suppose that
p(B) < 1

3 , then player 2’s best response is to play D, and the payoffs for B
and C are 1 and 4, respectively. Suppose that p(B) = 1

3 holds, then player
2’s response is π(M |m′) = π(D|m′) = 1

2 and the payoffs for type B and C
are both 2.5. For type B, the minimum of his payoff from three possible
beliefs from player 2 is 1, which is smaller than his equilibrium payoff level
2. Type B won’t defect for all beliefs. Similarly, type C won’t defect for
all beliefs either. Therefore, the sequential equilibrium (L,U) passes the
Intuitive Criterion.

3.9 Strengthened Intuitive Criterion

A sequential equilibrium fails the Strengthened Intuitive Criterion (a.k.a.
Forward Induction Equilibrium) if condition (1) holds and condition (2a) is
replaced by the condition:

(2c) ∀r ∈ BR(T\J(m′),m′), ∃τ ′ ∈ T\J(m′) s.t. u∗(τ ′) < u(τ ′,m, r).

Condition (2c) is different from condition (2a) in the following sense.
When we verify whether or not a sequential equilibrium fails the Intuitive
Criterion, we fix the type of all possible defection candidates one at a time
and then examine all possible posterior beliefs (i.e., best responses) of the
uninformed agent for each type sequentially. When we verify whether a se-
quential equilibrium fails the Strengthened Intuitive Criterion, we fix instead
all possible posterior beliefs one at a time and then we examine each of all
possible defection candidates under each specified belief. If for each of all
possible beliefs, there exists at least one defection candidate who will defect,
then the equilibrium fails the Strengthened Intuitive Criterion; on the other
hand, if for at least one possible belief, there is no defection candidate who
will defect, then the equilibrium passes the test.
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Under the Intuitive Criterion, a defection candidate defects only if he
will defect under all possible beliefs. Under the Strengthened Intuitive Cri-
terion, a defection candidate defects if he will defect under one belief. The
Strengthened Intuitive Criterion is more stringent in that it is easier to find
types that will defect under this criterion and thus we are going to reject
more sequential equilibrium than using the Intuitive Criterion.

Now we want to demonstrate that the sequential equilibrium (L,U),
which passes the Intuitive Criterion, won’t survive the Strengthened Intu-
itive Criterion. Step 1 is the same as before and we have T\J(m′ = R) =
{B,C}. Step 2: Since fixing responses is the same as fixing beliefs, we
suppose that p(B) > 1

3 and player 2’s best response is M . Given player
2’s best response M , is there a defection candidate who will defect? Sure,
type B will be happy to, since the defection will bring him 4 units of pay-
off, comparing to 2 units at equilibrium. Now let’s suppose p(B) < 1

3 and
player 2’s best response will be D. Given player 2’s best response D, is
there a defection candidate that will defect? Sure, type C will be happy to,
since the defection will bring him 4 units of payoff, comparing to 2 units
at equilibrium. Finally let’s suppose p(B) = 1

3 and player 2’s best response
is π(M |m′) = π(D|m′) = 1

2 . Given this best response, is there a defection
candidate that will defect? Both type B and C will be happy to, since the
defection will bring each of them 2.5 units of payoff, comparing to 2 units
at equilibrium. Regardless of player 2’s belief, there is always at least one
type to defect, so the sequential equilibrium (L,U) fails the Strengthened
Intuitive Criterion. Cho-Kreps Intuitive Criterion says that type B won’t
defect for all the beliefs, and type C won’t defect for all the beliefs either.
But here type B will defect in one set of belief and type C will defect in
another.

Is there anything at all in this game that will pass the Strengthened
Intuitive Criterion then? Yes, (L,U) by type A and B and (R,D) by type
C. How can we prove this? Because there is no out of equilibrium move at
all in this situation. Player 2 will always regard the move of R as initiated
by type C, and all moves of L as by types A and B. Moreover, type C
cannot gain anything from defection and types A,B cannot gain anything
from defection either.
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3.10 Divinity; Universal Divinity; Never a Weak
Best Response

Let’s denote the equilibrium utility for player 1 as

u∗(τ) =
∑

m∈M
u(m; τ, r) · φ(m; τ).

The set of best responses that make it optimal for type τ to defect is written
as

D(τ |m) = {r ∈MBR(T ,m)|u∗(τ) < u(m; τ, r)}.

The set of best responses that make it indifferent for type τ between
defecting and not defecting is written as

D0(τ |m) = {r ∈MBR(T ,m)|u∗(τ) = u(m; τ, r)}.

D1 Condition: Suppose for τ and τ ′ 6= τ , D(τ |m) ∪ D0(τ |m) ⊂
D(τ ′|m), then D1 condition holds.

Let’s call the union of the defection-prone best response set and the
defection-indifferent best response set for type τ as the best response set
for type τ weakly willing to defect. What Condition D1 says is that the
best response set for type τ ′ strictly willing to defect contains that for type
τ weakly willing to defect. That is equivalent to say that the belief set for
type τ ′ strictly willing to defect is greater than that for type τ weakly willing
to defect. Literally speaking, it says that if type τ is weakly willing to defect
then type τ ′ is strictly willing to defect; type τ ′ is more likely to defect than
type τ .

D1 Equilibrium: If the D1 Condition holds, the posterior assessment
is µ(τ |m) = 0.

In the D1 Equilibrium, the uninformed agent assigns zero probability to
the type τ who is less likely to defect, in response to the out-of-equilibrium
message m.

Divinity: Suppose the D1 condition holds, then µ(τ |m)
ρ(τ) ≤ µ(τ ′|m)

ρ(τ ′) .

The Divinity says that if τ ′ is more likely to defect than τ is to defect,
then the uninformed agent cannot assign more weight to type τ in forming
the posterior assessment. If we manipulate the inequality into the following
equivalent form,

µ(τ ′|m)
µ(τ ′|m) + µ(τ |m)

≥ ρ(τ ′)
ρ(τ ′) + ρ(τ)

,
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then it becomes clear that the relative weight of posterior belief assigned
to type τ ′ must be no less than the relative weight of priors for type τ ′, in
order to reflect the fact that type τ ′ is more likely to defect. In the case
where we have only two types, either τ ′ or τ , the divinity boils down to
µ(τ ′|m) ≥ ρ(τ ′), which makes perfect sense.

D2 Condition: Suppose that there exists a type τ such that

D(τ |m) ∪D0(τ |m) ⊂
⋃

τ ′ 6=τ
D(τ ′|m),

then the D2 criterion is said to hold.

This condition says that the best response set for type τ weakly willing
to defect is contained within the best response set for at least one other type
τ ′ 6= τ strictly willing to defect, i.e., it is more likely for at least one other
type τ ′ 6= τ than type τ strictly willing to defect.

Universal Divinity: If D2 Condition holds, the posterior assessment
is µ(τ |m) = 0.

This is a more stringent equilibrium concept than D1 Equilibrium. D1
Condition may not hold for one particular τ ′ 6= τ , but once D2 Condition
holds it must be the case that there is at least one type τ ′ 6= τ such that D1
holds. The converse may not be true.

Never a Weak Best Response (NWBR): Suppose that there exists
a type τ such that

D0(τ |m) ⊂
⋃

τ ′ 6=τ
D(τ ′|m),

then the posterior assessment is µ(τ |m) = 0.

Application Rule: Step 1: verify if the respective condition (D1 Con-
dition, D2 Condition, NWBR Condition) holds. If the condition doesn’t
hold, then the equilibrium passes the respective refinement trivially. Step 2:
If the condition holds, assign the posterior assessment according to respec-
tive refinement (D1 Equilibrium, Divinity, Universal Divinity, NWBR) to
get the best response under the updated beliefs. Next use the best response
to evaluate all types concerned, including the type less likely to defect, to
see if any type will defect. If there exists at least one type that will defect (it
doesn’t matter which particular type will defect), given the posterior beliefs
assigned, then it is said to fail the respective equilibrium concept.

Note the following nesting relationship between the various refinements
of the Nash Equilibrium. Strategic Stability Equilibrium ⊆ NWBR ⊆ Uni-
versal Divinity ⊆ D1 Equilibrium ⊆ Strengthened Intuitive Criterion ⊆ Cho-
Kreps’ Intuitive Criterion ⊆ Sequential Equilibrium ⊆ Subgame Perfection
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Nash Equilibrium ⊆ Nash Equilibrium. Moreover, we know that Perfectly
Sequential Equilibrium ⊆ Cho-Kreps’ Intuitive Criterion.

3.11 A Few Applications

3.11.1 Spence Model Revisited

Let’s start with the Spence’s model where the zero profit wage rate is n× e,
and n = 1 for low ability worker and n = 2 for high ability worker. Recall
that e is the signal the informed agent sent to the employer, education level.
The low-type worker’s optimization problem is max

e
e− k1e

2 and has a first-
best solution e∗1.

The high-type worker’s optimization problem is

max
e

2e− k2 · e2 s.t. 2e− k1 · e2 ≤ e∗1 − k1 · e∗21 .

The incentive compatibility condition 2e−k1·e2 ≤ e∗1−k1·e∗21 ensures that
the low-type worker will not mimic the high-type worker’s education level.
We consider at first possible pooling equilibrium and let the uninformed
agent have the following belief µ(τp|ep) about the concentration of high-
ability worker among the workers’ pool such that w(ep, µ) < 2ep, where ep
is the pooling education level.

 

 

 

 

 

 

 

 

Figure 15. Another Example of Sequential Equilibrium 
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Figure 17. Spence Model with Two Types of Workers 
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Figure 3.6: Spence Model with Two Types of Workers
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As usual, we assume that low-type worker has a steeper iso-utility curve.
In the graph above, utility levels are getting higher towards northwest, and
profit levels are getter higher towards southeast. The low-type worker will
occupy his first-best solution with education level e∗1 and his iso-utility curve
ISO1 cuts the high-type wage schedule at the point where the high-type
worker will signal education level of e∗2. (e∗1, e

∗
2) is the separating equilibrium

as we discussed before. Note that the exact location of (e∗p, w
∗
p) will depend

upon the uninformed agent’s belief µ(τp|ep).
(Q1) In the graph above, why is (e∗p, w

∗
p) part of a Sequential Equilib-

rium?

Let’s specify the out of equilibrium belief for the uninformed to be
µ(τ1|e 6= e∗p) = 1. Then the prevailing wage schedule is w = e for any
defector, which will make both types worse off upon defection. Therefore,
the pooling equilibrium is sustained as a Sequential Equilibrium.

(Q2) Is (e∗p, w
∗
p) a part of Cho-Kreps Equilibria?

Step 1: find out the never-defect candidates group. Since the ISO1

through the pooling equilibrium cuts the high-type wage at point A, any
education level higher than eA will make the low-type worse-off comparing
to the pooling equilibrium. Since the ISO2 through the pooling equilibrium
cuts the high-type wage at point B, there is a portion of education levels
lower than eB will make the high-type better-off comparing to the pooling
equilibrium. So for any out of equilibrium signal e′ ∈ (eA, eB), the low-type
will never defect and thus J(e′) = {1}. Step 2: find out the best response
set by the uninformed agent. Given that the low-type will never defect,
the uninformed agent forms the belief that µ(τ2|e′) = 1 and thus gives the
response w(e′) = 2e′. Therefore, the high-type worker will defect for sure
and thus the pooling equilibrium fails the Cho-Kreps Intuitive Criterion. As
a matter of fact, any pooling equilibrium in a two-type signaling model will
never be Cho-Kreps Equilibrium.

(Q3) Is the separating equilibrium (e∗1, e
∗
2) a part of Cho-Kreps Equilib-

ria?

First note that the only possible defection comes from a pooling equilib-
rium. Suppose that there is one type will defect into a pooling equilibrium,
then the immediate consequence is that the other type will defect as well,
by the definition of a pooling equilibrium. Therefore, we cannot find any
education level e′ such that only one type would defect, i.e., J(e′) = ∅. So we
cannot apply Step 1 for Cho-Kreps and the separating equilibrium fails the
Cho-Kreps Intuitive Criterion trivially. The intuition behind is that as long
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as the uninformed agent’s posterior belief is weighed sufficiently in favor of
the high-type worker, then both types will defect.

3.11.2 Spence Model with three types of workers

Next, we work on an extension of Spence model into three-type workers,
with ability levels n = 1, 2, 3. The graph is shown below.

Player B              Player A               Player B 

1

2

3

r
r

r

m1τ(0, 0)  

( 1, 3)

(1, 2)

( 1, 0)

−

−

 'm

1

2

3

r
r

r

m2τ(0, 0)  

(1, 0)

(1, 2)

( 2, 3)−

 'm

 

 

 

 

 

 

 

 

 

Figure 18. Spence Model with Three Types of Workers 

 

 

 

 

 

 

 

 

 

 

Figure 19. When Two (out of three) Types of Workers Are Hard to Distinguish 

 

 

 

 

 

 

 

 

 

 

Figure 20. Never a Weak Best Response vs. Universal Divinity 
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Figure 3.7: Spence Model with Three Types of Workers

(Q4) Is the partial pooling equilibrium (ep, e3) part of a Cho-Kreps Equi-
librium?

It is easy to show that (ep, e3) is a Sequential Equilibrium, for exam-
ple, by specifying the posterior belief in reaction to the out of equilibrium
education level e′ 6= ep, e3 as µ(τ1|e′) = 1. In the graph above, we set up
ep < e∗1 so that type 1 will not defect upon correctly identified as type 1.
Clearly if type 2 defects with e′ > e0

4, then type 1 won’t follow type 2’s
education level. So for type 2’s out of equilibrium move e′ ∈ (e0, e′0), we
have J(e′) = {1} and thus the uninformed agent concentrates the belief on
type 2 and 3. As a consequence, the best response must be w ≥ 2e′, and
thus type 2 would defect for sure. Therefore, the partial pooling equilibrium
(ep, e3) fails Cho-Kreps Intuitive Criterion. Also note that for type 2’s out

4 Why would we choose e0 corresponding to the intersection between ISO1 and w = 3e,
not the intersection between ISO1 and w = 2e? Because in Step 1 for Cho-Kreps we need
to find out a type that won’t defect for any posterior beliefs. Should we choose the latter
intersection point, the belief µ(τ3|e′) = 1 may make τ1 defect.
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of equilibrium move e′ > e′0, it may be the case that type 2 will not defect
for some beliefs.

Next, let’s draw the graph for the three-type signaling game a bit differ-
ently.
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Figure 18. Spence Model with Three Types of Workers 

 

 

 

 

 

 

 

 

 

 

Figure 19. When Two (out of three) Types of Workers Are Hard to Distinguish 

 

 

 

 

 

 

 

 

 

 

Figure 20. Never a Weak Best Response vs. Universal Divinity 
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Figure 3.8: Spence Model in presence of Almost Indistinguishable Types

(Q5) Is the partial pooling equilibrium (ep, e3) part of Cho-Kreps’ Equi-
libria?

As we demonstrated in (Q4), it is easy to show (ep, e3) is a Sequential
Equilibrium. Once again, we have ep < e∗1 so that type 1 will not defect
upon correct identification as type 1. If type 2 defects with e′ > e0, then
type 1 won’t follow type 2’s move. However, for type 2’s out of equilibrium
move e′ > e0, we are not sure whether type 2 will defect in the end. If the
posterior belief is weighed sufficiently in favor of type 2, then type 2 could
be worse off if adopting the defection move (because we don’t have e′0 > e0
in this graph). The fact that type 2 will not defect under this belief implies
that type 3 will not defect either (because otherwise the defected type 3
would receive a wage schedule very close to w = 2e.). In fact, if the belief
is heavily skewed in favor of type 2, we could have J(e′) = {1, 2, 3} = T .
Because we cannot find at least one type that will defect under all beliefs,
the partial pooling equilibrium passes Cho-Kreps Intuitive Criterion.

We may wonder what determines a partial pooling equilibrium that sur-
vives Cho-Kreps Intuitive Criterion? Equivalently speaking, what deter-
mines e′0 < e0 in this case? There are two possible conditions. (a) If type
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2 is very similar to type 1 so that the slope of ISO2 is sufficiently close to
ISO1 and the two iso-utility curves are very close to each other; or (b) the
wage schedule for type 3 becomes much steeper so that the never-mimicking
education level e0 for type 1 becomes much higher. The intuition behind
condition (a) is that when type 1 and 2 are becoming sufficiently close, then
neither of type 1 or 2 will defect from the partial pooling equilibrium and
thus (ep, e3) is part of Cho-Kreps Equilibrium. (Once we know type 1 and
2 will never defect, we know for sure that type 3 will not defect under some
beliefs and thus Step 2 won’t satisfy.) The intuition behind condition (b)
is that the wage schedule for type 3 is so high that the out of equilibrium
move e′ > e0 must be sufficiently high so that type 1 will not be attracted
to mimic. The fact that e′ > e0 lies in such a high level drives type 2 not
to defect. Once again, the fact that neither type 1 nor type 2 will defect
implies that type 3 cannot defect under all beliefs, and thus (ep, e3) is part
of Cho-Kreps Equilibria.

We now are going to show that a pooling equilibrium never survives
Universal Divinity. Note that this conclusion is true in only signaling games
where the informed agent moves first. We use a three-type signaling game
(in the immediately above graph) for illustration purpose. Let the utility of
type i be wi − ki · e2, where wi = i · e, i = 1, 2, 3. As usual we assume that
type 1 has lower ability and k1 > k2.

(Q6) Does the partial pooling equilibrium (ep, e3) survive Universal Di-
vinity?

Denote as wi
min the minimum wage needed to induce type i to defect

with e > ep. For type 1, we have w1
min − k1 · e2 = wp − k1 · e2p and thus

w1
min = wp + k1 · (e2 − e2p). To induce defection by type 2, we have w2

min −
k2 · e2 = wp − k2 · e2p and thus w2

min = wp + k2 · (e2 − e2p). Since k1 > k2, we
have w1

min > w2
min. Using the notations in Universal Divinity, we get:

D0(τ1, e) = w1
min(e);D(τ1, e) = (w1

min(e), 3e];
D0(τ2, e) = w2

min(e);D(τ2, e) = (w2
min(e), 3e].

Clearly, the following nesting relationship holds,

D0(τ1, e) ∪D(τ1, e) = [w1
min(e), 3e] ⊂ (w2

min(e), 3e] = D(τ2, e).

That is, type τ2 is more likely than type τ1 to defect and thus the pos-
terior belief is µ(τ1|e > ep) = 0. If we put this belief in the context of the
graph immediately above, then type 2 will defect with e ∈ (ep, e′0) under any
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best response and the partial pooling equilibrium won’t survive Universal
Divinity. In essence, the type 2 will guess about the uninformed agent’s
belief about the defector’s type and make decision whether or not to defect
accordingly.

One difference between Cho-Kreps and Universal Divinity is that under
Cho-Kreps for any e > ep, it is possible that the defector is mistakenly
believed as type 1 so that type 2 has to defect with e > e0, a higher education
level than e′0. Yet under Universal Divinity, the posterior belief is µ(τ1|e >
ep) = 0 so that no such mis-belief exists.

3.11.3 NWBR vs. Universal Divinity

In the game below, we are going to show that NWBR is even stronger than
Universal Divinity.
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Figure 18. Spence Model with Three Types of Workers 

 

 

 

 

 

 

 

 

 

 

Figure 19. When Two (out of three) Types of Workers Are Hard to Distinguish 

 

 

 

 

 

 

 

 

 

 

Figure 20. Never a Weak Best Response vs. Universal Divinity 
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Figure 3.9: Never a Weak Best Response vs. Universal Divinity

(Q7) Is the equilibrium (0,0) Universal Divinity?

Clearly, we can specify the posterior belief for player B as µ(τ2|m) = 1.
If player A sends the out of equilibrium signal m, the best response by player
B will be r3 under this posterior belief, and thus player A will not defect in
the first place. That is, the equilibrium (0,0) is a Sequential Equilibrium. To
determine whether (0,0) is Universal Divinity, we need to find out the best
response set for player B under all beliefs. Since v(r1) = 3 · ρ(τ1); v(r2) =
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2; v(r3) = 3 · (1− ρ(τ1)), we know the best response set is

MBR(µ(τ1),m) = MBR(ρ(τ1),m) =


r1 if ρ(τ1) > 2

3 ;
r2 if 1

3 < ρ(τ1) < 2
3 ;

r3 if ρ(τ1) < 1
3 ;

r̃1,2 if ρ(τ1) = 2
3 ;

r̃2,3 if ρ(τ1) = 1
3 .

Note that when ρ(τ1) = 1
2 , we have v(r1) = v(r3) = 3

2 . Why don’t we
use r̃1,3 in this case? Because it is within the range 1

3 < ρ(τ1) < 2
3 and r2

dominates r̃1,3 in that v(r2) = 2 > 3
2 = v(r̃1,3).

Now we can find out D(τi|m), D0(τi|m), i = 1, 2. Since we know that τ1
wont’ defect for responses r1 and r3, we have:

D(τ1;m, r2) = {π(r1) = 0, π(r2) = 1, π(r3) = 0} ;
D(τ1;m, r̃1,2) = {−π(r1) + [1− π(r1)] > 0, π(r3) = 0}

=
{
0 < π(r1) < 1

2 ,
1
2 < π(r2) < 1, π(r3) = 0

}
;

D(τ1;m, r̃2,3) = {π(r1) = 0, π(r2)− [1− π(r2)] > 0}
=

{
π(r1) = 0, 1

2 < π(r2) < 1, 0 < π(r3) < 1
2

}
;

D(τ1|m) =
{
{0 ≤ π(r1) < 1

2 ,
1
2 < π(r2) ≤ 1, π(r3) = 0}

{π(r1) = 0, 1
2 < π(r2) ≤ 1, 0 ≤ π(r3) < 1

2}

}
;

D0(τ1|m) =
{
{π(r1) = π(r2) = 1

2 , π(r3) = 0}
{π(r1) = 0, π(r2) = π(r3) = 1

2}

}
.

In order to apply D1 Condition, we find

D(τ1|m) ∪D0(τ1|m) =
{
{0 ≤ π(r1) ≤ 1

2 ,
1
2 ≤ π(r2) ≤ 1, π(r3) = 0}

{π(r1) = 0, 1
2 ≤ π(r2) ≤ 1, 0 ≤ π(r3) ≤ 1

2}

}
;

and

D(τ2|m) ∪D0(τ2|m) =
{
{π(r1) ∈ [0, 1], π(r2) = 1− π(r1), π(r3) = 0}
{π(r1) = 0, 2

3 ≤ π(r2) ≤ 1, 0 ≤ π(r3) ≤ 1
3}

}
.

Since there is no clear nesting relationship between D(τ1|m)∪D0(τ1|m)
and D(τ2|m), nor between D(τ2|m) ∪ D0(τ2|m) and D(τ1|m), we cannot
remove any defection candidate by assigning a zero posterior belief to the
less likely defection candidate. Therefore, the Sequential Equilibrium (0,0)
survives Universal Divinity5. Our next natural question is whether this
Universal Divinity survives NWBR.

5 As a general note, when we are dealing with two types in a signaling game, D1
Equilibrium is the same as Divinity and Universal Divinity.
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(Q8) Does the Universal Divinity (0,0) qualify to be Never a Weak Best
Response?

To use NWBR in this two-type model, we need to compare D0(τi|m) to
D(τj |m) where i, j = 1, 2 and i 6= j. We don’t find any nesting relationship
between D0(τ1|m) and D(τ2|m), but we do find that D0(τ2|m) ⊂ D(τ1|m),
which says that type τ1 is more likely to defect so that we assign the follow-
ing posterior belief µ(τ1|m) = 1 and remove type τ2 as a defection candi-
date. Given this posterior belief, player B’s best response is r1. Under this
best response from player B, however, type τ1 will not defect at all since
u(m; τ1, r1) = −1 < 0 and type τ2 will defect since u(m; τ2, r1) = 1 > 0.
Since under this belief and best response for player B, there exists at least
one type6 who will defect, the equilibrium (0,0) is not NWBR.

Does this reasoning make sense? The posterior belief is that type τ1 will
defect and type τ2 will not defect. But the eventual outcome is exactly the
opposite, type τ1 will not defect and type τ2 will defect. Note that Universal
Divinity has the same problem. An effort to restrain such nonsensible results
from occurring is the rationale behind Perfect Sequential Equilibrium, which
we will cover next.

3.12 Perfect Sequential Equilibrium

Before we introduce the concept of Perfect Sequential Equilibrium, let’s visit
some useful theorems.

Definition: Monotonic Signaling Games

For m ∈ M and π(r|m), π′(r|m) ∈ MBR(T ,m), if for some τ̂ ∈ T such
that

∑
r∈R(m) u(m; τ̂ , r) · π(r|m) >

∑
r∈R(m) u(m; τ̂ , r) · π′(r|m), then for all

τ ∈ T , we have
∑

r∈R(m) u(m; τ, r) · π(r|m) >
∑

r∈R(m) u(m; τ̂ , r) · π′(r|m).

Note that most signaling games are monotonic signaling games. Suppose
that the response r is a monetary payment, then it is assumed that the
informed agent prefer more money to less, regardless of m and τ . That is,
for any out of equilibrium message, every type τ ∈ T prefers more money
to less.

6 Note a very crucial point here is that neither Universal Divinity nor NWBR specifies
which particular type would defect from the equilibrium. All they say is that if at least
one type will defect after all criteria are satisfied, then the equilibrium fails Universal
Divinity or NWBR.
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Theorem 1: In genetic monotonic signaling games, Condition D1 is
equivalent to Universal Divinity and NWBR and Strategic Stability. [A
result from Cho-Sobel working paper (1988)]

Theorem 2: (Uniqueness) Suppose the following conditions hold,

(A1) if r > r′, then u(m; τ, r) > u(m; τ, r′) for the informed agent;

(A2) v(m; τ, r) for the uninformed agent is continuous in all its arguments
and is a strictly quasi-concave differentiable function of r;

(A3) ∂v/∂r is increasing in τ ;

(A4) (Single-Crossing Property) u(m; τ, r) is differentiable in m and r,
and −∂u/∂mi

∂u/∂r is decreasing in τ,∀i ∈ {1, 2, ..., N};

then the unique equilibrium surviving Condition D1 is also a Riley Reactive
Equilibrium.

One note about the relation to Riley Reactive Equilibrium is that when
the single-crossing property holds, we can always show nesting relationship
among best response sets for different types. Now we are ready to discuss
the Perfect Sequential Equilibrium.

Suppose that there exists a set K̂ such that K̂ = {τ ∈ T |u∗(τ) ≥
max

r∈R(m)
u(m; τ, r)}, i.e., the set K̂ is the types weakly unwilling to defect.

Define K ≡ T\K̂. Then player B, the uninformed agent, should concentrate
the posterior beliefs on the defection candidates K ⊆ T ,7 and in particu-
lar, using Bayes rule to update the beliefs as conditional distribution over
types who are strictly willing to defect. For K ⊆ T such that the priors
ρ(k ∈ K) > 0 and types τ ∈ K, the posterior beliefs in reaction to out of
equilibrium message m, are formed as

µ(τ |m) =
ρ(τ)∑

k∈K ρ(k)
,∀τ ∈ K.

Given the out of equilibrium message m and posterior beliefs µ(τ |m),
let the response r be a member of the mixed-best response set for player B,
i.e., r ∈ MBR(µ(τ |m),m), then a Perfect Sequential Equilibrium requires
that

{τ ∈ T |u∗(τ) ≤ u(m; τ, r)} = K,

7 As we have mentioned above about the rationale behind the Perfect Sequential Equi-
librium, the next steps will be to compute the best response sets and make sure that the
types who won’t defect are in the set K̂. This is more or less a fixed-point requirement.
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and
{τ ∈ T |u∗(τ) ≥ u(m; τ, r)} = K̂.

That is, the eventual results are consistent with the posterior beliefs. If
K 6= ∅, then the equilibrium is said to fail the Perfect Sequential Equilib-
rium.

Note that up to now we are saying that a type τ will not defect if the out
of equilibrium message m subject to the best response associated with the
posterior beliefs produces the same level of utility as that at equilibrium, i.e.,
u∗(τ) = u(m; τ, r). But here we are essentially saying that when u∗(τ) =
u(m; τ, r) holds, then the type τ defects with some positive probability so
that both {τ ∈ T |u∗(τ) ≤ u(m; τ, r)} = K and {τ ∈ T |u∗(τ) ≥ u(m; τ, r)} =
K̂ hold.

Formally, let Ks ⊆ K be the set of types strictly willing to defect and
Kw ⊆ K the set of types weakly willing to defect. Let h(τ) be the probability
that type τ makes the out of equilibrium move m, and

h(τ) =


1 if τ ∈ Ks;
[0, 1] if τ ∈ Kw;
0 if τ /∈ K.

Moreover, we have
∑

τ∈K h(τ) > 0 and Kw ∪Ks = K.

Let c(τ) be the posterior probability that type τ ∈ Ks made the move
m for sure and type τ ∈ Kw made the move with probability h(τ). Then
the posterior beliefs are updated as

c(τ) =

{
ρ(τ)·h(τ)∑

τ∈K ρ(τ)·h(τ) if τ ∈ K;
0 if τ /∈ K.

An equilibrium doesn’t survive Perfect Sequential Equilibrium if there
exists K ⊆ T with ρ(k ∈ K) > 0, a response r ∈ MBR(µ(τ |m),m) and a
probability h(τ) defined above such that c(τ) = µ(τ),∀t ∈ T . That is to say,
only if K = ∅, does the equilibrium pass the Perfect Sequential Equilibrium.

3.13 An Application of Perfect Sequential Equi-
librium

In the following signaling game of extensive form, we focus on the equilib-
rium (0,0).



3.13 An Application of Perfect Sequential Equilibrium 55

bad news   1 θ−  

good news   θ  

sell     0

buy     1

sell    Sγ

buy   Bγ

sell     1

buy     0

sell     Sγ

buy   Bγ

uninformed   1 µ−

informed   µ

uninformed   1 µ−

informed   µ

θµ
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θµ

 

 

 

 

 

 

 

 

 

Figure 21. One Example of Perfect Sequential Equilibrium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Tree of Beliefs in Glosten-Milgrom Model 
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Figure 3.10: One Example of Perfect Sequential Equilibrium

(Q1) Is the equilibrium (0,0) a part of Perfect Sequential Equilibrium?

This equilibrium is a Sequential Equilibrium if we specify the posterior
belief in response to the out of equilibrium signal m2 as µ(τ3|m2) = 1.
Under this belief, the best response for player B is π(U |m2) = π(D|m2) = 1

2 .
Hence type τ3 is strictly worse-off upon defection and the other two types
are indifferent.

To verify whether or not the equilibrium (0,0) is a part of Perfect Se-
quential Equilibria, we need to exhaust all possible choices of K, the set of
defection candidates. In observance that the out of equilibrium payoff for
type τ3 is always worse than the equilibrium outcome, we know τ3 /∈ K.

(a) Suppose that K = {τ1, τ2} and K̂ = {τ3}. The posterior belief is
updated, with concentration on types τ1 and τ2, as follows,

µ(τ1|m2) =
ρ(τ1)

ρ(τ1) + ρ(τ2)
= 2

3 ,

and thus µ(τ2|m2) = 1
3 .Then player B’s best response is π(D|m2) = 1 and

π(U |m2) = 0. Therefore type τ2 defects and type τ1 won’t. We cannot
break the equilibrium because the consistency requirement is violated; the
outcome K = {τ2} is not the same as before, K = {τ1, τ2}.

(b) Suppose thatK = {τ1} and K̂ = {τ2, τ3}. The posterior belief will be
µ(τ1|m2) = 1 and player B’s best response is π(D|m2) = 1 and π(U |m2) = 0.
Therefore type τ2 defects but type τ1 won’t. Once again, we cannot break
the equilibrium because the consistency requirement is violated; the outcome
K = {τ2} is not the same as before, K = {τ1}.
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(c) Suppose that K = {τ2} and K̂ = {τ1, τ3}. The posterior belief
will be µ(τ2|m2) = 1 and player B’s best response is π(U |m2) = 1 and
π(D|m2) = 0. Therefore type τ1 defects and type τ2 won’t. Once again,
we now have K = {τ1}, not as before K = {τ2}. We cannot break the
equilibrium.

Combining all three sensible cases for K above, we conclude that the
equilibrium (0,0) is a Perfect Sequential Equilibrium.

(Q2) Does the equilibrium (0,0) pass the Strengthened Intuitive Crite-
rion?

Once again, we recognize that τ3 will never defect under any beliefs, and
both τ1 and τ2 are hopeful of benefiting from defecting under certain beliefs.
We have J(m2) = {τ3} and T\J(m2) = {τ1, τ2}. Let the belief is that the
defector is type τ1 with probability p(τ1). The expected payoffs for player
B are then v(U,m2) = 1 − 2p(τ1) and v(D,m2) = 2p(τ1) − 1. The best
response set will be

MBR(m2) =


π(U |m2) = 1 if p(τ1) < 1

2 ;
π(D|m2) = 1 if p(τ1) > 1

2 ;
π(U |m2) = π(D|m2) = 1

2 if p(τ1) = 1
2 .

It is now clear that for the belief of p(τ1) < 1
2 , τ1 will defect and τ2

won’t; for the belief of p(τ1) > 1
2 , τ2 will defect and τ1 won’t; for the

belief of p(τ1) = 1
2 , both τ1 and τ2 are indifferent between defecting and

staying at the equilibrium. By our standard assumption in the context of
Intuitive Criterion and Strengthened Intuitive Criterion, indifference implies
no defection. Since under at least one belief, p(τ1) = 1

2 , none of the types
T\J(m2) = {τ1, τ2} will defect, we conclude that the equilibrium (0,0) passes
the Strengthened Intuitive Criterion.

In terms of nesting relationship concerning Perfect Sequential Equilib-
rium, all we can say is that Perfect Sequential Equilibrium ⊆ Cho-Kreps
Intuitive Criterion, and no other nesting relationship is definite.
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Chapter 4

Agency Theory

4.1 Principal-Agent Model

A principal-agent model is also known as a hidden action/technology model.
In this context, a principal tries to set up an optimal contract to hire an
agent. There is symmetric pre-contract information. The agent chooses
action a ∈ A, which is not contractible1, and produces output x ∈ X ≡ [x, x].
The precommitted wage is w(x). In general, the output level is determined
by x(θ̃, a), where θ̃ is a noise term. In this model, we use an explicit form
as x = a+ θ̃ . We assume that E[xa(θ̃, a)] > 0 holds, i.e., higher effort will
produce higher output on average. Note that we don’t assume that higher
effort will be associated with higher output in each effort level, because the
agent won’t necessarily get higher wage for higher effort.

The risk-averse agent’s utility function is u(w(x)) − ψ(a), where ψ(a)
is effort disutility and the reservation utility level is u. We assume further
that u′(·) > 0, u′′(·) < 0, ψ′(·) > 0 and ψ′′(·) > 0. The risk-averse principal’s
utility function is v(x− w(x)) with v′(·) > 0, v′′(·) < 0. When dealing with
the randomness in the model, it has been shown that it is more convenient
to work with x directly rather than θ̃. So we assume that the output has a
density of f(x; a) with c.d.f. F (x; a). Furthermore, we assume that output
from higher effort first-order stochastic dominates output from lower effort,
i.e., Fa(x; a) < 0,∀x. To avoid corner solution, we assume that Fa(x; a) =
Fa(x; a) = 0,∀a.

1 In this type of model, we can use “non-observable” and “non-contractible” inter-
changeably, but we won’t have this freedom when dealing with reputation models.
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Let’s work out the first-best solution assuming that the effort level a is
observable. The principal’s optimization problem is

max
w(·),a

∫ x

x
v(x− w(x))f(x; a)dx s.t.

∫ x

x
u(w(x))f(x; a)dx− ψ(a) ≥ u.

The constraint above is the individual rationality (IR) constraint, a.k.a.
participation constraint. We don’t need the incentive compatibility (IC)
constraint when working with first-best solution. The Lagrangian is setup
as

L =
∫ x

x
[v(x− w(x)) + λu(w(x))]f(x; a)dx− λψ(a)− λu,

where λ is the shadow price of income to the agent in each state. Using
standard optimal control theory, we get the following two sets of first-order
conditions:
(1) w.r.t. w(x; a),

v′(x− w(x))
u′(w(x))

= λ,∀x ∈ X;

and
(2) w.r.t. a,∫ x

x
[v(x− w(x)) + λ · u(w(x))] · fa(x; a)dx = λ · ψ′(a).

The optimal wage contract, called “forcing contract,” will be in the fol-
lowing form,

w(x; a) =
{
w∗(x)if a = a∗;
0otherwise.

The condition (1) is also known as “Borch Rule,” saying that the ratios of
marginal utilities of income are equated across states in an optimal insurance
contract.

Note that the above results are for the general case where both the
principal and the agent are risk-averse. Suppose that the principal is risk-
neutral and the agent is risk-averse, then the first set of first-order-conditions
above become

1
u′(w(x))

= λ,∀x ∈ X,

which implies w(x) = c, a flat wage schedule. The intuition behind the flat
wage contract is that the principal will bear all the risk since the principal is
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risk-neutral and the agent is risk-averse. Moreover, if the principal precom-
mits the flat wage to the agent, then the agent will not put as much effort as
required by the first-best solution; the precommittment is efficient ex ante
but inefficient ex post. The loss of efficiency comes from the deviation from
the first-best solution.

As a simple example, suppose that the utility function for the agent
takes the form u(w(x)) = 2

√
w(x) and ψ(a) = a. The principal is assumed

to be risk-neutral so that v(x−w(x)) = x−w(x). The output x follows an
exponential distribution between 0 and ∞; x ∼ exp(−x/a) · I(x ∈ (0,∞)),
where I(x ∈ (0,∞)) is an indicator function. Clearly, the mean output is a.
Let the agent’s reservation utility level be 1

16 .

The optimal conditions with respect to w(x; a) say that

1
u′(w(x))

= λ, i.e., w(x) = λ2.

Here we see a flat wage contract as mentioned before. The IR constraint
will be binding and the agent will earn reservation utility at the equilibrium,
i.e. 2

√
w(x)− ψ(a) = 1

16 , or, λ = 1
2(a+ 1

16).

The principal’s optimization problem then becomes

max
a

E(x; a)− E(w(x)) = max
a

a− λ2,

which has a solution of a∗ = 31
16 . Hence, we have λ = 1 and w(x) = 1. The

optimal contract will be

w =
{

1 if a = 31
16 ;

0 otherwise.

Now let’s go back to the general model and deal with the hidden action
case, or second-best solution. Since only the agent knows his effort level,
the principal solves the following problem,

max
w(·),a

∫ x
x v(x− w(x))f(x, a)dx s.t.

∫ x
x u(w(x))f(x, a)dx− ψ(a) ≥ u and

a ∈ arg max
a′∈A

∫ x
x u(w(x))f(x, a′)dx− ψ(a′).

Note that the second constraint here is the Incentive Compatibility con-
straint. Basically, the principal solves first the IC problem to get the agent’s



62 Agency Theory

best response set to each wage schedule, a(w(x)), then plugs this best re-
sponse into the principal’s utility maximizing problem upon the agent’s par-
ticipation, and finally solves for the optimal wage contract. If there are more
than one solution in the IC problem, then the principal chooses the action
a that maximizes his own utility.

Although this procedure sounds very intuitive, it proves very difficult to
get a close-form solution. Let’s for now assume interior optimum to the IC
problem, which we use the first-order approach (FOA) to tackle as follows,∫ x

x
u(w(x))fa(x, a)dx− ψ′(a) = 0 and

∫ x

x
u(w(x))faa(x, a)dx− ψ′′(a) = 0.

If we use µ as the multiplier on the effort first-order condition (associated
with the IC constraint), we can set up the Lagrangian to the principal’s
optimization as follows,

L =
∫ x
x v(x− w(x))f(x, a)dx+ λ

[∫ x
x u(w(x))f(x, a)dx− ψ(a)− u

]
+µ

[∫ x
x u(w(x))fa(x, a)dx− ψ′(a)

]
.

If we do a maximization pointwise inside integral (iso-parametric prob-
lem in calculus of variation), the optimal condition is,

v′(x− w(x))
u′(w(x))

= λ+ µ · fa(x, a)
f(x, a)

∀x,

which is often called the “modified Borch rule.” Note that the second term
on the right hand side measures how much risk-sharing is sacrificed for
incentive reasons. (Explain in more detail on how it does the job. Possibly
refer back to the paper.) Also note that

fa(x, a)
f(x, a)

=
∂ ln f(x, a)

∂a

measures the marginal change in log-likelihood of output with respect to a,
i.e., the likelihood ratio in response to one unit change in effort levels. A
positive likelihood ratio would indicate that additional effort would make
the current output level more likely and vice versa. A zero likelihood ratio
indicates that additional effort doesn’t help to change the likelihood of the
current output level, i.e., the likelihood ratio is least informative about the
effort content in the output.
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Theorem 1: [Holmstrom (1979)] Assume that the first-order approach
is valid, then at the optimum we have µ > 0, i.e., the effort first-order
condition associated with the IC constraint is binding.

A few important points to note here. (1) The first-order approach (FOA)
is not always valid and we are going to provide the sufficient condition for
the validity of FOA shortly. For instance, if the principal wants to elicit
the least costly action in A, then the optimum may well be at the corner
and in this case µ = 0. (An example?) (2) It is a crucial assumption that
the support of f(x, a) doesn’t change with a. In fact, if the lower-end point
of support, x, shifts with a, then the first best solution may be achieved.
(An example?) (3) The principal’s commitment to enforce the contract is
important. Again note the ex ante efficiency and ex post inefficiency of
commitment.

We may be interested in the monotonicity of the wage schedule w(x).
However, the output level x is informative in conveying information about
the effort level a, and we are not necessarily interested in output level per se.
For example, suppose that one particular moderate output level is achieved
only by the agent’s low effort level, and that one particular low output level
is achieved no matter how much effort the agent puts. If it is the principal’s
goal to encourage high effort level, then it is optimal to pay the agent more in
low output states than in moderate output states, even though the principal
prefers moderate output levels to low ones.

Definition: The monotone likelihood ratio property (MLRP) is satisfied
for f(x, a) and F (x, a) if and only if the following holds,

d

dx

(
fa(x, a)
f(x, a)

)
≥ 0.

If it is the case that A ≡ {aL, aH} is non-differentiable, then MLRP
requires,

d

dx

(
f(x, aH)− f(x, aL)

f(x, aH)

)
≥ 0.

Intuitively, MLRP says that at higher output level, the output level is
more informative about the effort level.

What’s the relationship between MLRP and FOSD? It turns out that
MLRP implies FOSD, but the converse is not true. Here we prove that
MLRP implies FOSD. Recall that FOSD is Fa(x, a) < 0, ∀x ∈ (x, x). We
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can rewrite it as

Fa(x, a) =
∫ x

x

fa(s, a)
f(s, a)

f(s, a)ds.

We know that when x = x,

Fa(x, a) =
∂

∂a

[∫ x

x

fa(s, a)
f(s, a)

f(s, a)ds
]

=
∂1
∂a

= 0.

When x < x, the integral must be negative in that MLRP says that
fa(x, a)/f(x, a) is increasing in x. Hence, MLRP implies FOSD. The fact
that the converse is not true implies that FOSD is a weaker concept than
MLRP.

Theorem 2: [Holmstrom (1979) and Shavell (1979)] Under the first-
order approach (FOA), if f(x, a) satisfies MLRP, then w(x) is increasing in
x.

This is actually a very useful theorem when constructing models. Let’s
use an example to illustrate its use. Suppose that there are two possible
effort levels, aH or aL, and three possible output level, x1, x2, x3, where
x1 < x2 < x3. The probability density f(x, a) is distributed as follows.

f(x, a) x1 x2 x3

aH 0.4 0.1 0.5
aL 0.5 0.4 0.1
f(x,aH)−f(x,aL)

f(x,aH) -0.25 -3.0 0.8

If the principal wishes to induce high effort in this case, he must use a
non-monotonic2 wage schedule to: (1) punish moderate outputs which are
most indicative of low effort (i.e., highest likelihood ratio in absolute value,
a higher effort level reduces the probability of moderate output); (2) reward
high outputs which are quite informative about high effort; and (3) provide
moderate income for low outputs which are not very informative (i.e., lowest
likelihood ratio in absolute value). The conclusion is that the optimal wage
schedule is not driven by output, but by the likelihood ratio, i.e., by the
informativeness of output about effort level. One real world application is
that when designing executive contract, we should filter out the systematic
risk component and reward on the idiosyncratic component.

2 Since the likelihood ratio doesn’t increase monotonically with respect to output level,
i.e., MLRP doesn’t hold, the optimal wage schedule need not be monotonic.
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In terms of validity of first-order approach (FOA), Mirrlees (1974) and
(1976) show that first-order approach is not generally valid. Grossman-Hart
(1983) provides the following:

Theorem 3: The combination of monotone likelihood ratio property
(MLRP) and convexity of distribution function condition (CDFC) is suffi-
cient for first-order approach to be valid and thus for w(x) to be monotonic.

Definition: Convexity of Distribution Function Condition (CDFC) A
distribution satisfies CDFC if and only if the following holds,

F [x, α · a+ (1− α) · a′] ≤ α · F (x, a) + (1− α) · F (x, a′),∀α ∈ [0, 1].

The condition above is essentially saying Faa ≥ 0.

If CDFC holds, then the agent’s objective function becomes globally
concave in a for any wage schedule w(·). For example, a generalized uniform
(a form of Beta distribution) will satisfy both MLRP and CDFC. F (x, a) =(

x−x
x−x

)1/(1−a)
, where a ∈ A ≡ [0, 1).

4.2 A Special Principal-Agent Problem with Closed-
form Solution

4.2.1 Holmstrom and Milgrom (1987)

In an effort to justify why there are so many linear contracts in the real world,
the authors design the following explicit model. An agent continuously
varies his effort and observes continuous output. Output is modeled as a
Brownian motion with drift µ. The agent’s utility is exponential, u(w, µ) =
− exp{−r[w − c(µ)]}, where r is the CARA parameter. The principal is
assumed to be risk-neutral and dx = µ(a)dt+σdz, where x is an arithmetic
Brownian motion with drift µ(a) and constant volatility σ. Let the profits
be x(t) = µ+ ε̃, and the terminal distribution of x(T ) = µ(a) + ε̃ is simply
N(0, σ2T ). The disutility of effort is c(µ) = 1

2kµ
2 and the reservation utility

level u is assumed to be 0.

It is easy to work out the first-best solution using the knowledge we have
mentioned in the previous section. The solution is

µfb = 1
k ;wfb = 1

2k ;ufb = 1
2k −

k
2 ·

1
k2 = 0,

and the principal split the output with the agent in a 50-50 fashion.
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In terms of the second-best solution, we show that the CARA utility
and normal distribution of x(T ), which comes from the arithmetic Brownian
motion, ensure the linearity of the optimal contract, which is denoted here
as w(x) = αx+ β.

The moment-generating function for a normal distribution is Mx(t) =
exp(µt+ 1

2σ
2t2) and Ex(etx) = Mx(t). Therefore, we have

E {− exp{−r[αµ+ αε+ β − c(µ)]}} = − exp{−r[αµ+β−c(µ)]+ 1
2σ

2r2α2}.

The agent’s utility function is over αx+β− c(µ). Now when the agent’s
utility is exp(µt+ 1

2σ
2t2), the certainty equivalent amount will be µ+ 1

2σ
2t

and here t = −r.
The certainty equivalent amount is

αµ+ β − c(µ)− 1
2rσ

2α2 = αµ+ β − 1
2kµ

2 − 1
2rσ

2α2.

Hence the agent’s problem is

max
µ

αµ+ β − 1
2kµ

2 − 1
2rσ

2α2.

The first-order condition on µ is α − kµ = 0 and thus µ = α/k. (Note
that the effort level positively depends on the contract slope α. Interpret it
intuitively.)

The principal maximizes x − w(x) = x − αx − β. So the principal and
agent jointly maximize the following objective3,

αµ+ β − 1
2kµ

2 − 1
2rσ

2α2 + x− αx− β = µ+ (1− α)ε− 1
2kµ

2 − 1
2rσ

2α2,

since x = µ + ε. The first-order condition to this optimization implies
µ = 1/k. Note that β doesn’t play a role here. The only role β plays is to
ensure the IR constraint.

Taking expectation in the joint objective, we see the principal maximiz-
ing

max
α,µ

µ− 1
2kµ

2 − 1
2rσ

2α2 s.t. α = µk.

The solution is (α∗, µ∗, π∗), where π∗ is the net profit, as follows:

α∗ =
1

1 + krσ2
;µ∗ =

α∗

k
=

1
k(1 + krσ2)

.

3 We do this to find out the difference between the first-best solution and the second-
best solution.
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Note that α∗ < 1 since krσ2 > 0. Furthermore, we have µ∗ = α∗ ·
µfb < µfb since α∗ < 1. (Do some comparative statics and interpret the
results intuitively.) The authors actually proved that the agent will adopt a
constant effort level in a very general case.

The agent’s certainty equivalent, αµ + β − 1
2kµ

2 − 1
2rσ

2α2, is equal to
the reservation utility level 0. Hence we have

αµ+ β = 1
2kµ

2 + 1
2rσ

2α2 = 1
2k(1+krσ2)

.

The expected wage is then

w(x) = αµ+ β =
1

2k(1 + krσ2)
,

and thus the net profit is

π∗ = µ∗ − α∗µ∗ − β∗ =
1

2k(1 + krσ2)
.
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Chapter 5

Dynamic Games and
Reputation

5.1 Holmstrom and Ricart I Costa (1986)

In this type of models, we are dealing with managerial incentives and capital
management. In particular, the relevant moral hazard for senior executives
is not laziness but investment distortions (either over-investment or under-
investment) that were used to affect ability perceptions. The distortion
propensity may create a need for capital rationing and hence centralized cap-
ital budgeting. This type of model is also known as “Reputational Concerns
Model” or “Career Concerns Model.” The difference between the moral
hazard here from the adverse selection in Akerlof’s paper is that people opt
in or out based upon the contracts at choice, and that we replace effort with
project choice here. Reputation models usually have more than one period
in consideration, while adverse selection models deal with one-shot game.

Suppose that there is a risk-neutral firm with a risk-averse manager.
There are two periods in consideration, with consumption c1 and c2 in each
period. The manager’s utility function is u(c1, c2) = u(c1) + βu(c2). At
time t = 0, the manager makes a decision on investment plan 1 that pays
off at time t = 1. At the time t = 1, the manager makes another decision
on investment plan 2 that pays off at time t = 2. We put investments in
two separate periods here because there is a reason to hire the manager for
two periods. The investment payoffs in two periods are yt, t = 1, 2. The
manager receives a signal st that predicts the payoff yt in the following
fashion: yt = st + εt. We assume that the signal st is independent of the
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manager’s ability, and the noise term εt is correlated with manager’s ability
and realized after investment decisions were made.

In a discrete time setting, we allow the signal and the noise term taking
a value of either 1 or –1, hence the payoff level takes the value of –2, 0 or
2. Suppose that the manager could be of either good or bad, denoted by
τ ∈ {g, b}. Furthermore, we assume the following priors:

Pr(st = 1) = Pr(st = −1) = 1
2 ;

Pr(εt = 1|τ = g) = 3
4 ,Pr(εt = 1|τ = b) = 1

4 ;
Pr(εt = −1|τ = g) = 1

4 ,Pr(εt = −1|τ = b) = 3
4 .

Assume that there is symmetric uncertainty about the manager’s ability,
i.e., Pr(τ = g) = p1. After the decision over investment plan 1 is made, the
payoff y1 and signal s1 are publicly known and thus ε1 is inferred. People
would update their beliefs about the manager’s ability using the inferred
noise term. The manager is paid w1 and w2 at the beginning of time t = 1
and t = 2, respectively. Note that no contingent contract is allowed in this
model; contracts are set period by period. Therefore, w1 doesn’t depend
upon y1, but w2 will reflect people’s updated belief. “Reputation” in this
model is the belief about the manager’s ability.

At time t = 0, the manager observes signal s1 and decides whether
or not to make investment for plan 1. Since the signal s1 doesn’t reveal
information about the manager’s ability, the market and the manager have
symmetric information in this sense. At the time t = 1, the manager gets
the wage w1 and the public observes y1 and s1. The public update the
prior belief p1 in the following way: (1) if the manager made the investment
and the project turned out to be a success (measured by ε1 = 1), then
the updated belief is p+

2 = Pr(τ = g|s1, ε1 = 1, invest); (2) if the manger
made the investment and the project turned out to be a failure (measured
by εt = −1), then the updated belief is p−2 = Pr(τ = g|s1, ε1 = −1, invest);
(3) if the manager didn’t make the investment, then the updated belief is
p0
2 = Pr(τ = g|s1, ε1, not invest).

The derivations are omitted here and we concentrate on the major re-
sults.

Proposition 1: If the manager is risk-averse, then he will never invest.
(under-investment)

There are two key facts/assumptions supporting this result. One is the
fact that beliefs form a martingale, i.e., E(p2) = p1. It says that the expected
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reputation (and thus wage) if the manager invests is the same as the expected
reputation if s/he doesn’t invest. The other is the assumption that the noise
term εt is observed ex post so that the value of signal st is reputationally
irrelevant in that st doesn’t provide information about εt. The manager
only pays attention to the noise term εt because the wage depends upon the
reputation.

Proposition 2: [Optimal Multi-period Contract, Harris and Holm-
strom, RES, 1982]

An optimal 2-period wage contract is downward rigid (because of risk-
aversion).

This result says that the wage can never be lower than the wage in the
period before. In the 2-period context, it means wage w1 provides a floor for
w2 and thus effectively increases w2 relative to w1. Also note the so-called
“quitting constraint,” which says that only the firm is obligated to honor
the contract and the manager can always quit. If the manager was found
to be a bad manager after period 1, the firm has to pay no less in the next
period. If the manger was found to be a good manager after period 1, the
manager always has the option to quit to seek the market wage dependent
upon the market inferred belief about his ability. Hence the wage contract
at period 2 is effectively the wage rate at the previous period plus a call
option.

Proposition 3: If the manager is not too risk-averse, then the option
he has on his human capital will cause him to over-invest.

We say the manager is “not too risk-averse” in the sense that there is a
tradeoff between the convex wage schedule and the concave utility function.
If the impact from the convex wage schedule is greater than that from the
concave utility function, then the manager will over-invest. Furthermore, the
over-investment will generally lead to capital rationing. In this particular
case, the manager can still benefit from the option even if he doesn’t invest
in the first period.

5.2 Milbourn, Shockley and Thakor (2001)

5.3 Diamond (1991)

In an effort of addressing how firms decide to borrow money, either by
issuing commercial papers or by borrowing from banks, Diamond provides
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a demand theory for bank loans. The key result is that firms with average
credit ratings tend to use bank loans while firms with high credit ratings
borrow directly. The intuition behind this result hinges upon a reputation
effect of bank loans. Firms that borrow from banks are subject to a costly
monitoring process, the result of which contributes to the credit ratings firms
receive and will affect firms’ future cost of capital.

Borrowers can be one of three types, type G who invests in a safe project
each period with sure return G that is higher than the riskless rate R, type
B who invests in a risky project in each period that yields return B with
probability π and zero return with probability 1 − π, or type BG who has
a choice of action at ∈ {g, b} at period t. A type BG borrower who chooses
action at = g invests in the safe project and an action of at = b leads to
the payoff from the risky project. Although the return B is higher than
the return G, the expected return on the risky project is lower than the
riskless rate, i.e., πB < R and B > G. Borrowers’ true type is their private
information.

Each project requires $1 of fund and lasts for one period. At the begin-
ning of the period t, each borrower presents a debt contract with face value
rt to the lenders, who decide which loans to monitor at the expense of C per
project period. Type BG borrowers also get a chance to choose their action
at ∈ {g, b}. The lenders’ monitoring can detect with probability P only type
BG borrowers who select risky projects, but doesn’t result in a conclusive
report on type G borrowers, type B borrowers, or type BG borrowers who
select safe projects. Only when type BG borrowers were caught choosing
risky projects were the loan requests turned down. The approved loans are
issued and the chosen projects are implemented. The promised face value
is paid at the end of period t unless the borrower’s project doesn’t yield
enough to pay back the loan, in which case a default occurs and it appears
on the borrower’s track record. Also on the track record are the date on
which the face value of debt was paid and previous monitoring results, if the
borrower was ever monitored. Any borrowers who default at any date or are
caught choosing risky projects have their credit cut off permanently. The
debt contract is enforced by a highly inefficient bankruptcy court. Whenever
a default occurs, the return of the project is assumed to be destroyed com-
pletely, including the portion that the borrower doesn’t pay to lenders. This
assumption effectively eliminates the incentive for borrowers to lie about the
project return.

Since a type G or B borrowers will never have a conclusive monitoring
report produced so as to affect the decision on their future loan requests, only
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type BG borrowers are concerned with their reputation. Let Vt+1 stand for
the present value of future rents for a type BG borrower that makes optimal
decisions from t+ 1 to the terminal period T <∞ and has a “clean” track
record up to date t. That is, the type BG borrower never defaulted before
and hasn’t been caught taking risky projects when monitored.

For a type BG borrower, the expected net payoff from taking the risky
project with action at = b is (1 − P ) · π · (B − rt + Vt+1) (when the type
BG borrower wasn’t caught in monitoring and the risky project happens to
deliver B), and the expected net payoff from taking the safe project with
action at = g is G−rt +Vt+1. Hence a type BG borrower with a clean-so-far
record will select the safe project if and only if

G− rt + Vt+1 ≥ (1− P ) · π · (B − rt + Vt+1),

or

rt ≤
G− π(1− P )B
1− π(1− P )

+ Vt+1.

If lenders don’t monitor at all, i.e., P = 0, then safe projects are the
optimal choice for the type BG borrower if and only if the face value of the
debt contract is low enough, i.e., rt ≤ (G− πB)/(1− π) + Vt+1.

When do lenders monitor? Only if their expected payoff from monitor-
ing exceeds the composite costs R+C. Monitoring has impact on only type
BG borrowers, and serves one of two functions, either incentives or screen-
ing. When monitoring induces type BG borrowers to choose safe projects,
it acts as incentives and avoids the loss (1 − π)rt in the event of default
associated with the risky projects. Let fG,t, fB,t, and fBG,t represent the
population fraction of borrowers of each type at date t. The expected payoff
to the lenders from monitoring as incentives is fBG,t(1 − π)rt. When mon-
itoring helps identify type BG borrowers who select the risky projects so
that lenders decline these loan requests, it acts as screening and increases
the expected payoff from πrt to R. Hence the expected payoff to the lenders
from monitoring as screening is fBG,t · P · (R− πrt). The value of monitor-
ing to the lender is clearly greater when it provides incentive rather than
screening, since 0 < P ≤ 1 and rt > R.

In presence of monitoring, reputation strengthens monitoring in the sense
that type BG borrowers with lower credit ratings (higher value of rt) are
now induced to choose safe projects although they wouldn’t do so had it not
been reputation concerns, e.g., G−π(1−P )B

1−π(1−P ) < rt <
G−π(1−P )B
1−π(1−P ) + Vt+1.
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The endogenously determined face value of debt corresponding to the
monitoring choices can be determined as follows. For the case of no moni-
toring and at = g, it is obvious

rg
t =

R

fG,t + πfB,t + fBG,t
.

For the case of monitoring as incentives for inducing at = g, we have

rI
t =

R+ C

fG,t + πfB,t + fBG,t
.

For the case of no monitoring and at = b, the face value is

rb
t =

R

fG,t + π(fB,t + fBG,t)
.

For the case of monitoring as screens with at = b, we have

rS
t =

C +R(1− PfBG,t)
fG,t + π[fB,t + (1− P )fBG,t]

.

Because borrowers offer the lowest possible face value at each date (this is
a sequential equilibrium supported by the lenders’ belief that borrower type
is not a function of the face value offered, see the explanation for Lemma
1), every borrower will choose the smallest of all relevant face values in the
period concerned.

We can interpret 1 − fB,t as the borrower’s credit rating and fBG,t as
the pervasiveness of moral hazard among all borrowers. After quite some
algebra, Diamond shows the following results. A borrower with high enough
credit rating chooses to issue commercial paper directly as monitoring is
unnecessary due to lack of moral hazard. For borrowers with intermediate
credit rating, monitoring provides incentives and works the best for the
lenders. If moral hazard is rather pervasive, these borrowers would borrow
from banks. For borrowers with still lower credit rating, monitoring acts as
a screen and works less well for the lenders. If moral hazard is not pervasive
enough, then monitoring costs will not be worth the cost and borrowers
will issue commercial papers directly. For the case of low monitoring cost
accompanied by very pervasive moral hazard, borrowers with low credit
ratings use bank loans subject to screening. For the case of high monitoring
cost, these borrowers won’t be able to obtain fund from anywhere.
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Chapter 6

Models of Herding Behavior

6.1 Bikhchandanni, Hirshleifer and Welch (1992)

6.2 Prendergast (1993)

This paper studies a tradeoff between inducing workers to exert effort and
leading workers to conform to the supervisor’s opinion when subjective per-
formance evaluation is used. Two major results of the paper are: the sub-
ordinate’s desire for conformity leads to inefficiency and the supervisor may
have an optimal balance between the two tradeoffs above.

In a pervasively risk-neutral environment, a manager (m) and a worker
(w) set out to observe a parameter η, which is normally distributed with
mean η0 and variance σ2

0. Each of the two people observes only a garbled
signal about the value of the parameter, i.e., ηm = η+ εm and ηw = η+ εw,
where εm ∼ N(0, σ2

m) and εw ∼ N(0, σ2
w) are uncorrelated. Agent i ∈

{m,w} exerts mutually unobservable effort ei at the expense of Ci(ei) to
uncover its respective noisy signal with variance σ2

i = hi(ei). Assume that
both the manager and the worker get more precise observations with more
efforts, i.e., h′i(ei) < 0 and h′′i (ei) > 0. Also assume the usual convex cost
function, C ′

i(ei) > 0, C ′′
i (ei) > 0. The boundary conditions for the cost

functions are Ci(0) = 0, C ′
i(0) = 0 and C ′

i(∞) = ∞.

Without involving any effort or cost, the worker observes one addi-
tional signal reflecting what the manager has seen, i.e., ηλ = ηm + λ, where
λ ∼ N(0, σ2

λ) is uncorrelated with all previously defined random variables.
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Clearly, if ηm is known to the worker, ηλ would be ignored due to the un-
necessary noise introduced by λ. It will be shown shortly that the worker
doesn’t ignore ηλ in the equilibrium as long as ew > 0.

Let η̂w represent the value of η reported by the worker, who is compen-
sated based on η0, ηm and η̂w, the three pieces of information the manager
uses to determine the posterior belief of the true parameter η. The business
around the parameter η is motivated by the goal of minimizing the posterior
variance V ar(η|η0, ηm, η̂w). All variances, σ2

0, σ
2
m, σ2

w and σ2
λ, are assumed

to be common knowledge.

At the first best, the worker truthfully reports ηw so that the manager’s
posterior belief about η is normally distributed with

E(η|η0, ηm, ηw) =
1
σ2
0
η0 + 1

σ2
m
ηm + 1

σ2
w
ηw

1
σ2
0

+ 1
σ2

m
+ 1

σ2
w

;

V ar(η|η0, ηm, ηw) = 1
1
σ2
0

+ 1
σ2

m
+ 1

σ2
w

.

That is, the posterior mean is just the precision-weighted average of the
prior and the manager and the worker’s observations, while ignoring the
garbled second-guess by the worker.

Because of the universal risk-neutrality, the worker is always compen-
sated at the reservation utility r plus the cost of efforts exerted Cw(ew). Let
the profit of the firm be negative variance of the manager’s posterior belief
about η. Then the manager sets the first-best efforts level by solving

max
em,ew

{−V ar(η|η0, ηm, ηw)− Cm(em)− [Cw(ew) + r]}.

There exists a unique solution to the optimization above since hi(ei) is
concave and Ci(ei) is convex for i ∈ {m,w}.

If the wage contract for the worker doesn’t depend upon the worker’s
report, then it is natural for the worker to shirk and thus the first-best
effort level is not attainable. Due to the non-observability of true η, the
manager has to use η0, ηm and η̂w to determine whether or not the worker
has exerted any effort. Let the manager use the following wage contract:
pay w1 if |η̂w − ηm| < k and pay w0 otherwise, where w1 > w0.

Because of this particular wage contract, the worker is motivated to
exert effort and produce a report as close to the manager’s observation as
possible. The worker has three pieces of information, η0, ηw and ηλ, to form
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an educated guess about the manager’s observation ηm. First of all, the
worker update his belief about η as follows,

E(η|η0, ηw) =
1
σ2
0
η0 + 1

σ2
w
ηw

1
σ2
0

+ 1
σ2

w

;V ar(η|η0, ηw) =
1

1
σ2
0

+ 1
σ2

w

.

Next, the worker uses ηm = η + εm to form a belief on ηm based upon
η0 and ηw,

E(ηm|η0, ηw) = E(η|η0, ηw);V ar(ηm|η0, ηw) = V ar(η|η0, ηw) + σ2
m.

By incorporating the information ηλ, the worker forms a final belief

E(ηm|η0, ηw, ηλ) = E(ηm|η0,ηw)/V ar(ηm|η0,ηw)+ηλ/σ2
λ

1/V ar(ηm|η0,ηw)+1/σ2
λ

;

V ar(ηm|η0, ηw, ηλ) = 1
1/V ar(ηm|η0,ηw)+1/σ2

λ
,

and reports to the manager

η̂w = E(ηm|η0, ηw, ηλ) = µ0ηw + µ1η0 + µ2ηλ,

where

µ0 ≡ σ2
0σ

2
λ/σ

2;µ1 ≡ σ2
wσ

2
λ/σ

2;µ2 ≡ (σ2
0σ

2
w + σ2

0σ
2
m + σ2

wσ
2
m)/σ2;

σ2 ≡ σ2
0σ

2
w + σ2

0σ
2
m + σ2

wσ
2
m + σ2

λ(σ2
0 + σ2

w).

That is, at any positive effort level, the worker reports η̂w, a distorted
report that puts too little weight on his true observation ηw. The desire
to conformity doesn’t cause an efficiency problem when σ2

λ = ∞ since the
worker’s report η̂w = µ0ηw + µ1η0 can be used by the manager to back out
the true observation ηw. It does cause efficiency loss when σ2

λ < ∞ since
the manager cannot back out ηw from the report η̂w = µ0ηw + µ1η0 + µ2ηλ,
due to the unobservable ηw and ηλ, the latter of which should have been
useless to the manager. The best the manager can do is to invert ηw from a
transformed report z = ηw + µ2

µ0
ηλ, i.e.,

V ar(ηw|η̂w) = σ2
w +

(
µ2

µ0

)2
σ2

λ.

Therefore, the manager gets the following posterior variance

V ar(η|η0, ηm, η̂w) = 1
1
σ2
0

+ 1
σ2

m
+ 1

σ2
w+σ2

λ(µ2/µ0)2

> 1
1
σ2
0

+ 1
σ2

m
+ 1

σ2
w

= V ar(η|η0, ηm, ηw).



80 Models of Herding Behavior

The basic intuition behind is that under the subjective performance eval-
uation, the incentive for the worker to exert effort leads to the worker’s desire
for conformity, i.e., the worker partially diverts the attention from his true
observation to second-guessing the manager’s observation. The desire for

conformity makes the worker’s report less informative (with σ2
λ

(
µ2

µ0

)2
unit

of additional variance) and thus a higher variance for the manager’s posterior
belief, comparing to the first-best level.

In short, a contract with incentives leads to dishonesty while the worker
exerts positive effort, and a contract without incentives induces truth-telling
while the worker exerts no effort. If σ2

λ is small enough, i.e., the worker can
very well second guess the manager’s opinion, then the manager may be
better off by using contract without incentives to induce truthful reporting
at a cost of zero effort.
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Chapter 7

Market Microstructure

7.1 Glosten and Milgrom (1985)

Here we are going to discuss a sequential trade model in a quote-driven
market. The aim of the paper is to explain the existence of bid-ask spread
for reasons other than inventory costs.

There is a market maker in a quote-driven system, who receives buy
and sell orders. The market maker doesn’t have information about the
true underlying value of assets and doesn’t know who has the private/true
information. Moreover, the buy and sell orders reveal noisy information
about the underlying value of assets. There are two types of traders in the
market, one is informed traders (or inside traders) and the other is noise
traders (or liquidity traders). The market maker loses money to informed
traders on average and breaks even with noise traders on average. A bid-ask
spread is set to allow the market maker to recoup his expected losses from
trading with informed traders.

Here are some specific assumptions.
(A1) Everyone in the model is risk-neutral and the market maker is com-
petitive.
(A2) The asset’s eventual value is v, which is a random variable.
(A3) During each transaction, a trader can trade only one unit of assets and
no block trades are allowed. (Note that Easley-O’Hare allow block trades to
happen in their JFE paper.) Without this constraint, the informed trader
will trade a large amount when time is right, which will in turn make the
market maker know who has inside information.
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(A4) All trades occur at either the bid or the ask price; no prices inside the
spread are allowed. (They are the so-called “regret-free” prices.)
(A5) There are no transaction costs or inventory costs in the market.
(A6) Trades take place sequentially with only one trade allowed to transact
at any point in time. In each round, a trader is selected probabilistically.

Now let’s discuss a simplified version of the paper. Suppose that the
asset’s eventual value takes one of two possible values, v ∈ {v, v}. Let s1
and b1 represent the sell and buy events at date 1, respectively. Let α1 and
β1 be the ask and bid prices posted. When the market maker sees a buy
order, he posts the ask price in the following way,

α1 = E(v|b1) = v · Pr(v = v|b1) + v · Pr(v = v|b1).

Similarly, when the market maker sees a sell order, he posts the bid price
in the following way,

β1 = E(v|s1) = v · Pr(v = v|s1) + v · Pr(v = v|s1).

All conditional beliefs are obtained by updating the priors by Bayes’
rule. For example,

Pr(v = v|s1) =
Pr(s1|v = v) · Pr(v = v)

Pr(s1|v = v) · Pr(v = v) + Pr(s1|v = v) · Pr(v = v)
.

From the beliefs updating tree above, we know that Pr(s1|v = v) =
µ+(1−µ)γS , Pr(s1|v = v) = (1−µ)γS , and thus Pr(s1) = (1−θ)µ+(1−µ)γS .
Similarly, we can obtain Pr(b1) = θµ + (1 − µ)γB. Note that we allow the
case where no trade occurs so that it is okay to have Pr(s1) + Pr(b1) 6= 1.

Let’s now use the following calibration: v = 1, v = 0, θ = 1
2 , γ

B = γS =
1
2 , µ = 1

2 . Clearly, we have the following results:

Pr(s|v = 0) = µ+ (1− µ)γS = 3
4 ; Pr(v = 0) = 1

2 ;
Pr(s) = (1− θ)µ+ (1− µ)γS = 1

2 ;
Pr(v = 0|s) = Pr(s|v=0)·Pr(v=0)

Pr(s) = 3
4 .

Similarly, we have Pr(v = 0|b) = 1
4 .

Therefore, the ask price is determined as

α = E(v|b) = 0 · Pr(v = 0|b) + 1 · Pr(v = 1|b) = 0 + 1 · (1− 1
4) = 3

4 ,
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Figure 21. One Example of Perfect Sequential Equilibrium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Tree of Beliefs in Glosten-Milgrom Model 
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and the bid price is determined as

β = E(v|s) = 0 · Pr(v = 0|s) + 1 · Pr(v = 1|s) = 0 + 1 · (1− 3
4) = 1

4 .

The bid-ask spread is thus 1
2 .

Next, we are to find out the dynamics of price and spread. Suppose that
the first trade is a buy with price E(v|b), and the market maker’s new prior
is

1− Pr(v = 0|b) = Pr(v = 1|b) = 3
4 .

Case (1): Suppose the second trade is a buy. The beliefs are updated as
follows,

Pr(v = 0|b1, b2) = Pr(b2|v=0,b1)·Pr(v=0|b1)
Pr(b2|v=0,b1)·Pr(v=0|b1)+Pr(b2|v=1,b1)·Pr(v=1|b1) .

Since

Pr(b2|v = 0) = Pr(b|v = 0) = 1
4 ;

Pr(v = 0|b1) = Pr(v = 0|b) = 1
4 ;

Pr(b2|v = 1) = Pr(b|v = 1) = µ+ (1− µ)γB = 3
4 ;

Pr(v = 1|b1) = Pr(v = 1|b1) = 1− Pr(v = 0|b1) = 3
4 ,

we have

Pr(v = 0|b2, b1) =
1
4 ×

1
4

1
4 ×

1
4 + 3

4 ×
3
4

= 1
10 .

It says that upon seeing two buy orders, it is highly unlikely that the
asset is a low value asset; i.e., Pr(v = 1|b2, b1) = 9

10 .

Case (2): Suppose the second order is a sell. The beliefs are updated as
follows,

Pr(v = 0|b1, s2) = Pr(s2|v=0,b1)·Pr(v=0|b1)
Pr(s2|v=0,b1)·Pr(v=0|b1)+Pr(s2|v=1,b1)·Pr(v=1|b1) .

Clearly, we have

Pr(s2|v = 0) = Pr(s|v = 0) = 3
4 ; Pr(v = 0|b1) = Pr(v = 0|b) = 1

4 ;
Pr(s2|v = 1) = Pr(s|v = 1) = 1

4 ; Pr(v = 1|s) = 3
4 .

Therefore we have Pr(v = 0|b1, s2) = 1
2 and we are back to the prior

before any trade happens. The new ask price is determined as

E(v|b1, b2) = 1 · Pr(v = 1|b1, b2) + 0 · Pr(v = 0|b1, b2) = 9
10 ,
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and the new bid price is determined as

E(v|b1, s2) = 1 · Pr(v = 1|b1, s2) + 0 · Pr(v = 0|b1, s2) = 1
2 .

In the limiting case, a series of buy orders will lead the price to 1 and a
series of sell order will lead the price to 0.

Some of the key results are summarized as follows: (1) Even without
inventory cost, the paper can demonstrate the existence of bid-ask spread.
(2) E(Pt+1|It) = Pt, where It is the market maker’s information set. This
property says that the transaction prices form a martingale. A few impli-
cations of this property are: market is semi-strong-form efficient, and first
differences of the transaction price process are serially uncorrelated. (3)
Sufficiently high adverse selection (for example, the probability of having an
informed trader is too high.) may lead to a market breakdown.

7.2 Grossman and Stiglitz (1980)

This model is also known as “information-driven” model. There are two
assets in the market, one risk-free asset with price normalized to 1, and
one risky asset x with price of p. The terminal value of the risk asset is
denoted as ṽ and it follows a normal distribution N(µ, 1

ρv
), where ρv is the

precision of ṽ. There are two traders in the market, one is uninformed and
the other one is informed with a signal s about ṽ where s ∼ N(v, 1

ρs
), where

v is a realization of ṽ and ρs is the precision of the signal s. Each trader
is endowed with m units of risk-free asset and xi units of risky asset. In
particular, xi ∼ N(0, 1

ρx
),∀i = 1, 2. The total random endowment of risky

asset is x = x1 + x2. Then agent’s utility function is u(w) = − exp(−wi),
where wi is the ith trader’s wealth level. The linear conjecture of the price
level for the risky asset is p = αµ+ βs− γx, where α, β and γ are positive
constants in that higher asset mean value µ, higher private signal s, or lower
endowment of risky asset will lead to higher price p.

Here we introduce some tool on working with normal distributions. Sup-
pose that we have f(x|µ) = N(µ, σ2

x) and g(µ) = N(m,σ2
µ). Suppose further

that µ is unknown, and σ2
µ and σ2

x are known. The posterior assessment of
µ becomes

g(µ|x) =
f(x|µ)g(µ)∫
f(x|µ)g(µ)dµ

.
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Specifically, the posterior is a normal distribution

N

[ m
σ2

µ
+ x

σ2
x

1
σ2

µ
+ 1

σ2
x

,
1

1
σ2

µ
+ 1

σ2
x

]
.

Therefore, the new mean (posterior) is a weighted average of x and m
where the weights are the relative precision, and the new variance (posterior)
is the inverse of the new precision which is the sum of precisions.

In our study here, the prior on v is N(µ, 1
ρv

) and the posterior on v after
observing s is normally distributed with mean µρv+sρs

ρv+ρs
and variance 1

ρv+ρs
.

Here comes a seemingly strange assumption in the model. Both the
informed and uninformed traders see the price before submitting their order,
and they will repeat this process until the price converge to the equilibrium
price level. Essentially, traders based their submission on the equilibrium
price.

From the linear conjecture p = αµ + βs − γx, we know that the best
guess about s for the uninformed is (p−αµ)/β since E(x) = 0. Let’s define
θ ≡ (p − αµ)/β so that θ = s − (γ/β)x holds. Clearly we have θ|v ∼

N

(
v, 1

ρs
+

(
γ
β

)2
· 1

ρx

)
. Let’s define 1

ρθ
≡ 1

ρs
+

(
γ
β

)2
· 1

ρx
. The uninformed’s

posterior belief about the asset value is normally distributed, i.e., v|θ ∼
N(µρv+θρθ

ρv+ρθ
, 1

ρv+ρθ
).

The optimization problem for the uninformed is then

max
y
− exp(−wi) s.t. wi = vy + (m− py).

In the budget constraint above, vy is the investment in the risky asset
and m − py is the endowment of risk-free assets. This optimization can be
rewritten as

max
y

∫
− exp[−vy − (m− py)]q(v|θ)dv, where p = αµ+ βs− γx.

Using the fact that E[exp(n)] = exp[E(n) + 1
2(n)] for a normally dis-

tributed variable n, the objective can be rewriteen as

max
y
− exp[−y · E(v|θ)− (m− py) + 1

2y
2 · (v|θ)].
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The informed has exactly the same optimization problem except that
θ was replaced by s. The first-order condition yields the informed’s and
uninformed’s demand as

DI =
E(v|s)− p

V ar(v|s)
;DU =

E(v|θ)− p

V ar(v|θ)
.

If we substitute previous results into these demand equations, we have

DI = µρv + sρs − p(ρv + ρs);DU = µρv + sρθ − p(ρv + ρθ).

By equating supply to demand, DI +DU = x, we have

p = 2µρv+sρs+θρθ−x
2ρv+ρs+ρθ

.

If we substitute θ = s−
(

γ
β

)
x into this solution, we have

p =
2µρv+s(ρs+ρθ)−x[1+(

γ
β )ρθ]

2ρv+ρs+ρθ
.

We can solve the following system of equations for α, β, γ, ρθ,

α = 2ρv

2ρv+ρs+ρθ
;

β = ρs+ρθ
2ρv+ρs+ρθ

;

γ =
1+(

γ
β )ρθ

2ρv+ρs+ρθ
;

1
ρθ

= 1
ρs

+
(

γ
β

)2
· 1

ρx
.

The equilibrium price is certainly linear, as conjectured before.

There are a number of weakness of the paper: (1) the price conjecture
is linear; (2) conditioning trades on equilibrium price; (3) non-strategic be-
havior of the informed; (4) possibility of negative price.

7.3 Kyle (1985)

Here are a few major distinctions between Kyle (1985) and Grossman and
Stiglitz: (1) the model in this paper doesn’t assume “conditioning trades on
price;” (2) it assumes risk-neutrality and still gets interior solution. This
model is also known as “strategic-trader” model. Both the Grossman and
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Stiglitz and the Kyle models are batch-clearing model in an order-driven
market.

In the market of one asset, there are two traders: the informed trader
submits trade quantity x and the noise trader submits trade quantity y ∼
N(0, σ2

y). The informed trader receives a private signal v about the under-
lying value of the asset, where v ∼ N(p0,Σ0). The informed trader knows
v and the distribution of y and submits order x, while the market maker
observes the order flow θ ≡ x+ y. Every participant, including the market
maker, is risk-neutral in this model. The market marker earns zero profit
while the informed trader earns profit π = (v− p)x, where p is the price set
by the market maker.

Suppose that the market maker conjectures that the informed trader will
follow a linear order strategy given by x = β(v−p0). (We are going to verify
later on that this linear strategy exists.) Then we have θ = β(v − p0) + y,
i.e., θ

β + p0 = v + y
β . We can define a transformation of the order flow as

z ≡ θ
β + p0. It is clear that z = v + y

β and thus z|v ∼ N(v, σ2
y

β2 ). Given the
observation of z, the market marker’s posterior belief about v is normally
distributed, i.e., v|z ∼ N(p1,Σ1), where

p1 =
p0

Σ0
+ z

σ2
y/β2

1
Σ0

+ 1
σ2

y/β2

, and Σ1 =
1

1
Σ0

+ 1
σ2

y/β2

.

It is clear that the market maker is effectively adopting a linear pricing
rule so that the informed trader can conjecture it as p1 = p0 + λ(x + y),
i.e., the informed trader takes into account the impact of his trade on the
equilibrium price. Hence the informed trader can solve his own optimization
problem as

max
x

E(π) = max
x

E[(v − p)x], where p = p1.

The first order condition of this problem is v − p0 − 2λx − λE(y) =
0, i.e.,x = v−p0

2λ . Since in the original conjecture, we have x = β(v− p0), the
comparison of the conjecture and the solution of x yields β = 1

2λ . Similarly,

we can compare the conjecture and the solution of p1 to get λ = 1
2

(
Σ0
σ2

y

)1
2

and β =
(

σ2
y

Σ0

)1
2 .

One simple implication is that the informed trades more when the noise
trading has more variance. On the other hand, if there is no randomness at
all for the noise trader, then the informed will not trade at all.
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Chapter 8

Security Design

8.1 Boot and Thakor (1993)

The authors are intrigued by two questions in the security design literature.
First, why would a firm partition its cash flow across multiple types of
financial claims? Second, why do firms pool individual assets into a portfolio
and then partition the portfolio cash flows?

The authors’ intuition goes as follows. A revenue-maximizing firm is
willing to split its cash flow into two parts, one senior and information-
insensitive component as well as one subordinate yet information-sensitive
component. That’s because wealth-constrained informed investors would
be able to concentrate in only the information-sensitive part (they earn
zero expected profit from trading the other part), rather than being forced
to invest in the composite asset. Such a split effectively boosts up the
informed leverage in the information-sensitive component of the firm and
the higher informed demand helps drive the asset price closer to its true
value. Obviously, only the high-valued firm would benefit from so doing,
but the low-valued firm couldn’t afford not doing so.

As far as the practice of bundling and then re-partitioning individual
cash flows is concerned, it benefits a revenue-maximizing high-valued firm
because the formation of a portfolio diversifies away the noisiness of signals
on the individual asset values. Less noisy signals to informed investors entice
higher informed demand for the asset, and thus once again the individual
asset’s true value (that is, the asset value being high) becomes less opaque.

We consider first the case of one firm offering one unit of asset, the
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value of which could be high, x̃ = x, or low, x̃ = x. The true type of
the firm (either G for the high-valued or B for the low-valued) is not in
the domain of public information. The common prior is that any firm is of
type G with probability q. Three types of risk-neutral investors are involved
in the market. Purely liquidity traders demand l dollar worth of asset, the
randomness of which is captured by the probability density function f(l) over
(0,∞). Each atomistic informed trader spends M dollar to acquire a perfect
signal φ about the firm’s true type, and has one dollar remaining in wealth to
invest on the asset if the firm turns out to be type G, i.e., φ = G. The signal
is identical, or “photocopied,” across all informed traders. There also exist
sufficient number of uninformed discretionary traders (UDTs) jointly acting
as a market maker in taking the residual demand and setting the clearing
price so that the expected profit for one UDT to become informed at the
expense of M dollar is zero. This zero expected profit condition effectively
determines the actual number of informed traders in the market who submit
θ dollar worth of order in total in the event of observing a “photocopied”
signal that reveals the firm as type G. The price impact of each informed
trader is assumed to be negligible.

Let V represent a marginal investor’s expected payoff to become in-
formed. We can write

V = −M + q

∫ ∞

0

x− P e(θ + l)
P e(θ + l)

f(l)dl,

where P e(D(φ, l)) is the equilibrium price of the asset when the demand (in
dollar term) from purely liquidity traders and informed traders is D(φ, l) =
θ + l upon the photocopied signal φ = G revealed to informed traders.
Note that no short sale is allowed in the current setup and the investor is
restrained in wealth (with one dollar remaining to invest on the asset upon
receiving a good signal); otherwise, the informed traders would hold infinite
position. The endogenously determined measure of informed traders θ∗ can
be solved from the zero-expected-profit condition for the marginal informed
investor,

V (θ∗|q, x, x,M, f(l)) = 0.

The equilibrium price is determined by

P e(D(φ, l)) = x · Pr(φ = G|D(φ, l)) + x · Pr(φ = B|D(φ, l))
= [x− x] · Pr(φ = G|D(φ, l)) + x,

where the conditional probability Pr(·|·) is calculated using Bayes’ rule

Pr(φ = G|D(φ, l)) =
q · f(D − θ)

q · f(D − θ) + (1− q) · f(D)
.
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The revenue for the type G firm for providing one unit of asset can be
written as

RG ≡
∫ ∞

0
P e(θ + l)f(l)dl = x+

∫ ∞

0
[x− x] · Pr(φ = G|θ + l)f(l)dl.

The authors impose a crucial assumption f ′(θ+l) < 0,∀l ∈ (0,∞), which
is sufficient to reach two intuitive results, ∂P e/∂θ > 0 and ∂V/∂θ < 0. That
is, the higher is the informed demand, the higher the equilibrium price is. On
the other hand, the higher informed demand (i.e., more competition among
informed), the lower expected profit for the marginal informed investor. It is
also easy to see that ∂RG/θ > 0 under this assumption, listed as Proposition
1.

Proposition 1: The type G issuing firm’s equilibrium expected revenue
is increasing in the measure of the set of informed traders, θ. The type B
firm’s expected revenue is decreasing in θ.

Since the expected revenue of type G issuing firm is increasing in the
informed demand, this type of issuing firm should design the security so
as to induce more traders to become informed. This goal can be achieved
by decomposing securities. In particular, the issuer can split the composite
security into two securities: a senior security A that is not information
sensitive and guarantees a payoff of x, and a junior security S that is more
information sensitive than the composite security and pays off x − x by a
type G firm and 0 by a type B firm.

Gorton and Pennacchi (1990) show that once a less-information-sensitive
security is created the liquidity demand will be shifted toward that security.
Boot and Thakor assume that there is still sufficient liquidity demand left
for the information sensitive security so as to guarantee positive informed
demand for the junior security. They have the following result.

Proposition 2: The total equilibrium expected revenue that the type G
issuer obtains by issuing securities A and S is higher than that obtained by
issuing the composite security. Thus, in equilibrium the type G firm splits
its composite security into A and S. Although the total expected revenue of
the type B firm is lower in the equilibrium involving securities A and S than
in the equilibrium involving only the composite security, the type B firm also
splits its composite security into A and S. The Nash equilibrium involving
securities A and S, when augmented by the UDT’s belief that a firm issuing
the composite security is type B with probability one, is sequential and
survives the universal divinity refinement.
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Intuitively, the security splitting has two competing effects on the amount
of informed demand in equilibrium. On the one hand, the informed demand
increases because the expected payoff from acquiring information becomes
higher on the junior security S than on the composite security, as the in-
formed traders won’t gain anything from trading the senior security A. On
the other hand, the reduced liquidity demand for security S as a result of the
splitting makes informed traders easier to be detected and thus discourages
informed demand. Despite these two competing effects, the wealth enhance-
ment for type G firms by splitting its security is preserved as long as there is
positive informed demand in S, accompanied by sufficient liquidity demand.

This is feasible because the informed traders are able to concentrate their
limited wealth in the junior security S after the splitting, instead of being
confined to investing in the composite security. The “informational leverag-
ing up” of the informed investors implies that the information acquisition
cost can be compensated by a smaller difference between the true asset value
and the equilibrium price level for security S than the composite security.
The wealth enhancement for type G firm is qualitatively preserved as long
as there is positive informed demand for S, and the splitting affects only the
level of informed trading.

It is clear that a type B firm is strictly worse off to split the security
rather than offer the composite security. A type B firm has to mimic the
type G firm’s security splitting behavior; otherwise, it is unambiguously
identified as type B.

To check the robustness of the model specification above, the authors
make many interesting and realistic extensions in considering factors such
as market clearing with possible rationing, heterogeneous information pro-
duction costs, limited short sales, and homemade splitting etc. The result
in the benchmark model is qualitatively preserved under these extensions.

Now we consider the case of multiple assets and address the second
research question in the paper, i.e., why bundle and re-partition individual
asset’s cash flows? Suppose the informed traders now get noisy signal φ̃i

for asset i. The variance of the signals (photocopied among all informed
traders for each particular asset), σ, is assumed to be the same across all
assets. The probability of the noise signal making type-I error is assumed
to be the same as making type-II error, denoted as δ(σ) ∈ (0, 1

2). That is,

Pr(φ̃i = G|B) = Pr(φ̃i = B|G) = δ(σ).

Since the informed traders submit zero order for perceived type B firms,
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we have the following expected payoff to the marginal informed trader (omit-
ting the asset-specific subscript i)

V = −M + q · [1− δ(σ)] ·
∫ ∞
0

x−P e(θ+l)
P e(θ+l) f(l)dl

−(1− q) · δ(σ) ·
∫ ∞
0

P e(θ+l)−x
P e(θ+l) f(l)dl.

The equilibrium level of informed demand, θ∗∗ can be determined us-
ing the zero-expected profit condition, V (θ∗∗|q, x, x,M, f(l), σ) = 0. The
equilibrium price level can again be calculated using the Bayes’ rule.

Imposing the same assumption f ′(θ+ l) < 0,∀l ∈ (0,∞), we can get the
intuitive results ∂V/∂P e > 0 and ∂V/∂θ < 0. Finally we have the following
two main results.

Proposition 5: The equilibrium measure of the set of informed traders,
θ∗∗, is strictly decreasing in the idiosyncratic variance σ.

Proposition 6: The type G issuing firm’s expected revenue is strictly
decreasing in σ.

The first result fits well with the intuition that less precise signals reduce
the marginal benefit to becoming informed. Note that ∂δ/∂σ > 0, i.e., the
probability of type I error is increasing in signal variance. The second result
implies that a type G firm would benefit from having its asset sold as part
of a portfolio of type G assets. The intuition behind is that a portfolio of
type G assets diversifies away the idiosyncratic noise, and the reduction in
σ improves the precision of the signal received by informed investors. As a
result, higher informed demand is induced and thus higher expected revenue
for the issuing firm.

8.2 Diamond (1984)

Because of the post contract information asymmetry (that is, the project
outcome is observable to only the entrepreneur, not the lenders), the lenders
have to use costly monitoring to effectively enforce the debt contract. The
costly monitoring can produce two types of inefficiency, either duplicate
efforts when every lender is monitoring the same project or free rider problem
when some lenders who don’t monitor take advantage of others who do
monitor. It seems natural to delegate the monitoring to a bank who monitors
the entrepreneur on behalf of depositors so as to reduce the gross cost of
monitoring. However, since the entrepreneur’s payments to the bank are not
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observable to the depositors, when and how should the depositors delegate
the monitoring task to the bank? This paper provides the determinants of
delegation costs and shows that diversification among banks makes bank
lending more effective than direct lending in terms of net cost incurred.

An entrepreneur with zero wealth is borrowing $1 directly fromm lenders
to finance a one-period project that produces expected return higher than
the risk-free rate R. Both the entrepreneur and lenders are risk-neutral
and have wealth constraint – each lender has only $ 1

m . The project output
is a random variable ỹ, the distribution of which is common knowledge,
bounded between 0 and y. The realization of output y is observable to only
the entrepreneur, who sets an aggregate payment z, observable to everyone
without incurring any cost and bounded between 0 and y, to the m lenders.
The incentive for the entrepreneur to pay z such that Eỹ(z) ≥ R is obtained
by enforcing a non-pecuniary penalty φ(z) for the entrepreneur. The non-
pecuniarity of the penalty constructs a deadweight loss, as it is costly to the
entrepreneur but non-beneficial to the lenders. It can be best interpreted as
“bankruptcy cost” such as the grilling experience for the entrepreneur to go
through the bankruptcy procedure.

The optimal contract with penalties φ∗(·) solves

max
φ(·)

Eỹ

[
max

0≤z≤ỹ
ỹ − z − φ(z)

]
,

subject to
z ∈ arg max

0≤z≤ỹ
y − z − φ(z),

and

Eỹ

[
arg max

0≤z≤y
ỹ − z − φ(z)

]
≥ R.

The objective for the lenders is to set an optimal penalty φ(·) such that
the entrepreneur sets the payment z to maximize his own expected profit.
The two constraints are the incentive compatibility conditions for the en-
trepreneur and lenders, respectively.

Proposition 1: The optimal contract solves the optimization above is
given by φ∗(z) = max(h− z, 0), where h is the smallest solution to

Pr(ỹ < h) · Eỹ (ỹ|y < h) + Pr(ỹ ≥ h) · h = R.

That is, it is a debt contract with face value h and the entrepreneur is
punished to the extent to which he is no better off than telling the truth.
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The face value is smallest among all debt contracts inducing truth-telling
and resulting in expected return at the risk-free rate. Given the penalty
function φ∗(·), the incentive-compatible payment z∗ = min(h, y), i.e., the
entrepreneur either pays off the debt or gives up the output completely in
the event of insolvency.

It is clear that any acts of purging the non-pecuniary penalty will be
efficiency-improving, and costly monitoring the output ỹ is one such way,
provided that the monitoring cost is less than the deadweight loss φ(·).

When an investor can incur cost K to observe the project output ỹ, three
types of contracting scenarios may occur. The contract can be as described
above, with no monitoring. A second possibility is for each of the m lenders
to spend K in monitoring the output. A third choice is that the lenders can
delegate the monitoring task to a bank. The least expensive of these three
choices will be selected.

Since the payments to the bank are not observable to each individual
lender, the m lenders on the project should provide incentive, or incur del-
egation cost D, to the bank to monitor and enforce the contract. The bank
lending will be chosen if K +D ≤ min {Eỹ [φ∗ (ỹ)] ,m ·K} .

Suppose that a bank with zero wealth monitorsN projects defined above,
receiving gi(yi) from the ith project if the bank monitors yi. It is assumed
that ỹi are independently distributed. So the bank receives total payment
GN ≡

∑N
i=1 gi(yi) from entrepreneurs. Let G̃N be the random variable with

realization GN , bounded between 0 and GN . The bank has to pay N · R
in expectation, ZN in realization, to the N ·m depositors. It is clear that
gi(yi) ≤ yi and ZN ≤ GN .

Using the same argument above, the bank has to pay the deadweight
bankruptcy penalties unless Pr(G̃N ≥ N · R) = 1. Since each entrepreneur
can pay only as much as the output received, we know Pr

(
G̃N ≥ N ·R

)
≤

Pr
(∑N

i=1 yi ≥ N ·R
)
. Any entrepreneur i with Pr(ỹi ≥ R) = 1 could

borrow directly without incurring bankruptcy penalties, hence entrepreneurs
who borrow from the bank will lead the bank to incur expected bankruptcy
penalties.

Let Φ(ZN ) be the bankruptcy penalties imposed on the bank. From
Proposition 1, the optimal Φ(ZN ) is given by Φ∗(ZN ) = max(HN − ZN , 0),
where HN is the smallest solution to

Pr
(
G̃N < HN

)
· EG̃N

(
G̃N |GN < HN

)
+ Pr(G̃N ≥ HN ) ·HN ≥ N ·R.
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The bank is not viable whenN = 1 because it incurs as high a deadweight
penalty as in absence of the bank and in addition it spends resources on
monitoring. The bank as an intermediary thrives when N → ∞, however,
shown by Proposition 2 below.

Proposition 2: The cost of delegation per entrepreneur monitored,
DN , approaches zero as N → ∞ if entrepreneurs’ projects have bounded
returns, distributed independently.

Proposition 2 shows that the key is the diversification in the bank’s
portfolio. The bank doesn’t have to be monitored by the depositors in this
case because the probability of payments to depositors falling short of the
face value of debt contracts is very small, as a result of the bank’s portfolio
diversification.

Since the depositors are risk-neutral, they are not better off by investing
directly in diversified projects. The diversification within the bank cannot
be replaced by the depositors’ diversification across banks.
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